Global existence of weak solutions to unsaturated poroelasticity
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2849-2897

We study unsaturated poroelasticity, i.e., coupled hydro-mechanical processes in variably saturated porous media, here modeled by a non-linear extension of Biot’s well-known quasi-static consolidation model. The coupled elliptic-parabolic system of partial differential equations is a simplified version of the general model for multi-phase flow in deformable porous media, obtained under similar assumptions as usually considered for Richards’ equation. In this work, existence of weak solutions is established in several steps involving a numerical approximation of the problem using a physically-motivated regularization and a finite element/finite volume discretization. Eventually, solvability of the original problem is proved by a combination of the Rothe and Galerkin methods, and further compactness arguments. This approach in particular provides the convergence of the numerical discretization to a regularized model for unsaturated poroelasticity. The final existence result holds under non-degeneracy conditions and natural continuity properties for the constitutive relations. The assumptions are demonstrated to be reasonable in view of geotechnical applications.

DOI : 10.1051/m2an/2021063
Classification : 35K61, 65M12, 74F10, 76S05
Keywords: Poroelasticity, Biot model, variably saturated porous media, Richards’ equation
@article{M2AN_2021__55_6_2849_0,
     author = {Both, Jakub Wiktor and Pop, Iuliu Sorin and Yotov, Ivan},
     title = {Global existence of weak solutions to unsaturated poroelasticity},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2849--2897},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/m2an/2021063},
     mrnumber = {4344860},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021063/}
}
TY  - JOUR
AU  - Both, Jakub Wiktor
AU  - Pop, Iuliu Sorin
AU  - Yotov, Ivan
TI  - Global existence of weak solutions to unsaturated poroelasticity
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2849
EP  - 2897
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021063/
DO  - 10.1051/m2an/2021063
LA  - en
ID  - M2AN_2021__55_6_2849_0
ER  - 
%0 Journal Article
%A Both, Jakub Wiktor
%A Pop, Iuliu Sorin
%A Yotov, Ivan
%T Global existence of weak solutions to unsaturated poroelasticity
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2849-2897
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021063/
%R 10.1051/m2an/2021063
%G en
%F M2AN_2021__55_6_2849_0
Both, Jakub Wiktor; Pop, Iuliu Sorin; Yotov, Ivan. Global existence of weak solutions to unsaturated poroelasticity. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2849-2897. doi: 10.1051/m2an/2021063

[1] H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311–341. | MR | Zbl | DOI

[2] I. Ambartsumyan, V. J. Ervin, T. Nguyen and I. Yotov, A nonlinear Stokes-Biot model for the interaction of a non-Newtonian fluid with poroelastic media. ESAIM: M2AN 53 (2019) 1915–1955. | MR | Numdam | DOI

[3] J.-L. Auriault and E. Sanchez-Palencia, Etude de comportment macroscopique d’un milieu poreux sature deformable. J. de Méc. 16 (1977) 575–603. | MR | Zbl

[4] M. Biot, General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941) 155–164. | JFM | DOI

[5] L. Bociu, G. Guidoboni, R. Sacco and J. T. Webster, Analysis of nonlinear poro-elastic and poro-visco-elastic models. Arch. Ration. Mech. Anal. 222 (2016) 1445–1519. | MR | DOI

[6] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer (2013). | MR | Zbl | DOI

[7] F. Bonaldi, K. Brenner, J. Droniou and R. Masson, Gradient discretization of two-phase flows coupled with mechanical deformation in fractured porous media. Comput. Math. App. 98 (2021) 40–68. | MR

[8] J. W. Both, K. Kumar, J. M. Nordbotten and F. A. Radu, Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media. Comput. Math. App. 77 (2019) 1479–1502. | MR

[9] J. W. Both, K. Kumar, J. M. Nordbotten, F. A. Radu, The gradient flow structures of thermo-poro-visco-elastic processes in porous media. Preprint: (2019). | arXiv

[10] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media (2010). | MR | Zbl

[11] M. K. Brun, E. Ahmed, J. M. Nordbotten and F. A. Radu, Well-posedness of the fully coupled quasi-static thermo-poroelastic equations with nonlinear convective transport. J. Math. Anal. App. 471 (2019) 239–266. | MR | DOI

[12] Q. M. Bui, D. Osei-Kuffuor, N. Castelletto and J. A. White, A scalable multigrid reduction framework for multiphase poromechanics of heterogeneous media. SIAM J. Sci. Comput. 42 (2020) B379–B396. | MR | DOI

[13] J. T. Camargo, J. A. White and R. I. Borja, A macroelement stabilization for multiphase poromechanics. Comput. Geosci. 25 (2021) 775–792. | MR | DOI

[14] P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2013). | MR | Zbl | DOI

[15] D. S. Clark, Short proof of a discrete Gronwall inequality. Discrete Appl. Math. 16 (1987) 279–281. | MR | Zbl | DOI

[16] O. Coussy, Poromechanics. Wiley (2004).

[17] R. De Boer, Theory of Porous Media: Highlights in Historical Development and Current State. Springer Science & Business Media (2000). | MR | Zbl | DOI

[18] L. Evans, Partial Differential Equations: Graduate Studies in Mathematics. American Mathematical Society (2010). | MR | Zbl

[19] R. Eymard, T. Gallouët and R. Herbin, Convergence of finite volume schemes for semilinear convection diffusion equations. Numer. Math. 82 (1999) 91–116. | MR | Zbl | DOI

[20] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Handb. Numer. Anal. 7 (2000) 713–1018. | MR | Zbl

[21] R. Eymard, R. Herbin and A. Michel, Mathematical study of a petroleum-engineering scheme. ESAIM: M2AN 37 (2003) 937–972. | MR | Zbl | Numdam | DOI

[22] F. Gaspar, J. Gracia, F. Lisbona and P. Vabishchevich, A stabilized method for a secondary consolidation Biot’s model. Numer. Methods Part. Differ. Equ. 24 (2008) 60–78. | MR | Zbl | DOI

[23] R. Lewis and B. Schrefler, The finite element method in the static and dynamic deformation and consolidation of porous media. In: Numerical Methods in Engineering. John Wiley (1998). | Zbl

[24] A. Mikelić and M. F. Wheeler, Theory of the dynamic Biot-Allard equations and their link to the quasi-static Biot system. J. Math. Phys. 53 (2012) 123702. | MR | Zbl | DOI

[25] A. Mikelić and M. F. Wheeler, Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17 (2013) 455–461. | MR | DOI

[26] A. Mikelić, M. F. Wheeler and T. Wick, Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput. Geosci. 19 (2015) 1171–1195. | MR | DOI

[27] Y. Mualem, A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Res. Res. 12 (1976) 513–522. | DOI

[28] M. A. Murad and J. H. Cushman, Multiscale flow and deformation in hydrophilic swelling porous media. Int. J. Eng. Sci. 34 (1996) 313–338. | MR | Zbl | DOI

[29] R. H. Nochetto and C. Verdi, Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal. 25 (1988) 784–814. | MR | Zbl | DOI

[30] J. M. Nordbotten and M. A. Celia, Geological Storage of CO2: Modeling Approaches for Large-scale Simulation. John Wiley & Sons (2011). | DOI

[31] I. S. Pop and B. Schweizer, Regularization schemes for degenerate Richards equations and outflow conditions. Math. Models Methods Appl. Sci. 21 (2011) 1685–1712. | MR | Zbl | DOI

[32] C. Rodrigo, X. Hu, P. Ohm, J. H. Adler, F. J. Gaspar and L. T. Zikatanov, New stabilized discretizations for poroelasticity and the Stokes’ equations. Comput. Methods Appl. Mech. Eng. 341 (2018) 467–484. | MR | DOI

[33] M. E. Rose, Numerical methods for flows through porous media. I. Math. Comp. 40 (1983) 435–467. | MR | Zbl | DOI

[34] B. Saad and M. Saad, Study of fully implicit petroleum engineering finite-volume scheme for compressible two-phase flow in porous media. SIAM J. Numer. Anal. 51 (2013) 716–741. | MR | Zbl | DOI

[35] R. Showalter, Diffusion in poro-elastic media. J. Math. Anal. App. 251 (2000) 310–340. | MR | Zbl | DOI

[36] R. E. Showalter, Poroelastic filtration coupled to Stokes flow. Lecture Notes Pure Appl. Math. 242 (2005) 229. | MR | Zbl | DOI

[37] R. Showalter and N. Su, Partially saturated flow in a poroelastic medium. Discrete Continuous Dyn. Syst. Ser. B 1 (2001) 403–420. | MR | Zbl | DOI

[38] J. Simon, Compact sets in the space L p ( 0 , T ; B ) . Ann. Mat. Pura App. 146 (1986) 65–96. | MR | Zbl | DOI

[39] A. Szymkiewicz, Modelling Water Flow in Unsaturated Porous Media: Accounting for Nonlinear Permeability and Material Heterogeneity. Springer Science & Business Media (2012).

[40] A. Tavakoli and M. Ferronato, On existence-uniqueness of the solution in a nonlinear Biot’s model. Appl. Math 7 (2013) 333–341. | MR

[41] K. V. Terzaghi, The shearing resistance of saturated soils and the angle between the planes of shear. In: First International Conference on Soil Mechanics 1 (1936) 54–59.

[42] C. J. Van Duijn and A. Mikelić, Mathematical Theory of Nonlinear Single-Phase Poroelasticity. (2019). | HAL

[43] C. Van Duijn, A. Mikelić, M. F. Wheeler and T. Wick, Thermoporoelasticity via homogenization: modeling and formal two-scale expansions. Int. J. Eng. Sci. 138 (2019) 1–25. | MR | DOI

[44] M. Van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44 (1980) 892–898. | DOI

[45] M. Wheeler, G. Xue and I. Yotov, Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity. Comput. Geosci. 18 (2014) 57–75. | MR | DOI

[46] J. A. White, N. Castelletto, S. Klevtsov, Q. M. Bui, D. Osei-Kuffuor and H. A. Tchelepi, A two-stage preconditioner for multiphase poromechanics in reservoir simulation. Comput. Methods Appl. Mech. Eng. 357 (2019). | MR | DOI

[47] A. Ženíšek, The existence and uniquencess theorem in Biot’s consolidation theory. Aplikace Matematiky 29 (1984) 194–211. | MR | Zbl

Cité par Sources :