A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2473-2501

We present a structured coagulation-fragmentation model which describes the population dynamics of oceanic phytoplankton. This model is formulated on the space of Radon measures equipped with the bounded Lipschitz norm and unifies the study of the discrete and continuous coagulation-fragmentation models. We prove that the model is well-posed and show it can reduce down to the classic discrete and continuous coagulation-fragmentation models. To understand the interplay between the physical processes of coagulation and fragmentation and the biological processes of growth, reproduction, and death, we establish a regularity result for the solutions and use it to show that stationary solutions are absolutely continuous under some conditions on model parameters. We develop a semi-discrete approximation scheme which conserves mass and prove its convergence to the unique weak solution. We then use the scheme to perform numerical simulations for the model.

DOI : 10.1051/m2an/2021061
Classification : 35L60, 35Q92, 92D25
Keywords: Coagulation-fragmentation equations, structured populations, non-negative Radon measures, Bounded-Lipschitz norm, semi-discrete schemes, conservation of Mass
@article{M2AN_2021__55_5_2473_0,
     author = {Ackleh, Azmy S. and Lyons, Rainey and Saintier, Nicolas},
     title = {A structured coagulation-fragmentation equation in the space of radon measures: {Unifying} discrete and continuous models},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2473--2501},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021061},
     mrnumber = {4330732},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021061/}
}
TY  - JOUR
AU  - Ackleh, Azmy S.
AU  - Lyons, Rainey
AU  - Saintier, Nicolas
TI  - A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2473
EP  - 2501
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021061/
DO  - 10.1051/m2an/2021061
LA  - en
ID  - M2AN_2021__55_5_2473_0
ER  - 
%0 Journal Article
%A Ackleh, Azmy S.
%A Lyons, Rainey
%A Saintier, Nicolas
%T A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2473-2501
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021061/
%R 10.1051/m2an/2021061
%G en
%F M2AN_2021__55_5_2473_0
Ackleh, Azmy S.; Lyons, Rainey; Saintier, Nicolas. A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2473-2501. doi: 10.1051/m2an/2021061

[1] A. S. Ackleh, Parameter estimation in a structured algal coagulation-fragmentation model. Nonlinear Anal.: Theory Methods App. 28 (1997) 837–854. | MR | Zbl | DOI

[2] A. S. Ackleh and K. Deng, A nonautonomous juvenile-adult model: well-posedness and long-time behavior via a comparison principle. SIAM J. Appl. Math. 69 (2009) 1644–1661. | MR | Zbl | DOI

[3] A. S. Ackleh and B. G. Fitzpatrick, Modeling aggregation and growth processes in an algal population model: analysis and computations. J. Math. Biol. 35 (1997) 480–502. | MR | Zbl | DOI

[4] A. S. Ackleh and R. L. Miller, A model for the interaction of phytoplankton aggregates and the environment: approximation and parameter estimation. Inverse Prob. Sci. Eng. 26 (2017) 152–182. | MR | DOI

[5] A. S. Ackleh and N. Saintier, Well-posedness for a system of transport and diffusion equations in measure spaces. J. Math. Anal. App. 492 (2020) 1–32. | MR | DOI

[6] A. S. Ackleh and N. Saintier, Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete Continuous Dyn. Syst. Ser. B 26 (2021) 1469. | MR | DOI

[7] A. S. Ackleh, K. Deng and X. Wang, Existence-uniqueness and monotone approximation for a phytoplankton-zooplankton aggregation model. Z. Angew. Math. Phys. 57 (2006) 733–749. | MR | Zbl | DOI

[8] A. S. Ackleh, J. Carter, K. Deng, Q. Huang, N. Pal and X. Yang, Fitting a structured juvenile-adult model for green tree frogs to population estimates from capture-mark-recapture field data. Bull. Math. Biol. 74 (2012) 641–665. | MR | Zbl | DOI

[9] A. S. Ackleh, R. Lyons and N. Saintier, Finite difference schemes for a structured population model in the space of measures. Math. Biosci. Eng. MBE 17 (2020) 747–775. | MR | DOI

[10] J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: existence, uniqueness, and density conservation. J. Stat. Phys. 61 (1990) 203–234. | MR | Zbl | DOI

[11] J. Banasiak and W. Lamb, Coagulation, fragmentation and growth processes in a size structured population. Discrete Continuous Dyn. Syst.-Ser. B 11 (2009) 563–585. | MR | Zbl | DOI

[12] R. J. H. Beverton and S. J. Holt, On the dynamics of exploited fish populations. In: Fisheries and Food. Vol. XIX of Fishery Investigations Series II. Ministry of Agriculture (1957) 1–957.

[13] P. J. Blatz and A. V. Tobolsky, Note on the kinetics of systems manifesting simultaneous polymerization-depolymerization phenomena. J. Phys. Chem. 49 (1945) 77–80. | DOI

[14] J. P. Bourgade and F. Filbet, Convergence of a finite volume scheme for coagulation-fragmentation equations. Math. Comput. 77 (2008) 851–882. | MR | Zbl | DOI

[15] A. B. Burd and G. A. Jackson, Particle aggregation. Ann. Rev. Mar. Sci. 1 (2009) 65–90. | DOI

[16] J. A. Cañizo, Convergence to equilibrium for the discrete coagulation-fragmentation equations with detailed balance. J. Stat. Phys. 129 (2007) 1–26. | MR | Zbl | DOI

[17] J. A. Cañizo, J. A. Carrillo and S. Cuadrado, Measure solutions for some models in population dynamics. Acta Appl. Math. 123 (2013) 141–156. | MR | Zbl | DOI

[18] J. Carrillo, R. M. Colombo, P. Gwiazda and A. Ulikowska, Structured populations, cell growth and measure valued balance laws. J. Differ. Equ. 252 (2012) 3245–3277. | MR | Zbl | DOI

[19] J. M. C. Clark and V. Katsouros, Stably coalescent stochastic froths. Adv. Appl. Probab. 31 (1999) 199–219. | MR | Zbl | DOI

[20] T. Debiec, M. Doumic, P. Gwiazda and E. Wiedemann, Relative entropy method for measure solutions of the growth-fragmentation equation. SIAM J. Math. Anal. 50 (2018) 5811–5824. | MR | DOI

[21] K. Deng and Y. Wu, Extinction and uniform strong persistence of a size-structured population model. Discrete Continuous Dyn. Syst. Ser. B 22 (2017) 831–840. | MR | DOI

[22] R. M. Dudley, Distances of probability measures and random variables. In: Selected Works of RM Dudley. Springer (2010) 28–37. | MR | DOI

[23] A. Eibeck and W. Wagner, Approximative solution of the continuous coagulation-fragmentation equation. Stochastic Anal. App. 18 (2000) 921–948. | MR | Zbl | DOI

[24] J. H. Evers, S. C. Hille and A. Muntean, Mild solutions to a measure-valued mass evolution problem with flux boundary conditions. J. Differ. Equ. 259 (2015) 1068–1097. | MR | DOI

[25] H. Federer, Geometric Measure Theory. Springer (2014). | Zbl | MR

[26] H. Federer, Colloquium lectures on geometric measure theory. Bull. Am. Math. Soc. 84 (1978) 291–338. | MR | Zbl | DOI

[27] R. Fortet and E. Mourier, Convergence de la Répartition Empirique Vers la Répartition Théorique. Annales scientifiques de l’École Normale Supérieure 70 (1953) 267–285. | MR | Zbl | Numdam | DOI

[28] A. K. Giri, J. Kumar and G. Warnecke, The continuous coagulation equation with multiple fragmentation. J. Math. Anal. App. 374 (2011) 71–87. | MR | Zbl | DOI

[29] A. K. Giri, P. Laurençot and G. Warnecke, Weak solutions to the continuous coagulation equation with multiple fragmentation. Nonlinear Anal. Theory Methods App. 75 (2012) 2199–2208. | MR | Zbl | DOI

[30] P. Gwiazda and A. Marciniak-Czochra, Structured population equations in metric spaces. J. Hyperbolic Differ. Equ. 07 (2010) 733–773. | MR | Zbl | DOI

[31] P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A Nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients. J. Differ. Equ. 248 (2010) 2703–2735. | MR | Zbl | DOI

[32] P. Gwiazda, A. Marciniak-Czochra and H. R. Thieme, Measures under the flat norm as ordered normed vector space. Positivity 22 (2017) 105–138. | MR | DOI

[33] O. J. Heilmann, Analytical solutions of Smoluchowski’s coagulation equation. J. Phys. A 25 (1992) 3763–3771. | MR | Zbl | DOI

[34] J. Jabłoński and A. Marciniak-Czochra, Efficient algorithms computing distances between Radon measures on ℝ. Preprint (2013). | arXiv

[35] J. Jabłoński and D. Wrzosek, Measure-valued solutions to size-structured population model of prey controlled by optimally foraging predator harvester. Math. Models Methods Appl. Sci. 29 (2019) 1657–1689. | MR | DOI

[36] G. A. Jackson, A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Res. Part A. Oceanogr. Res. Papers 37 (1990) 1197–1211. | DOI

[37] G. A. Jackson and S. E. Lochmann, Effect of coagulation on nutrient and light limitation of an algal bloom. Limnol. Oceanogr. 37 (1992) 77–89. | DOI

[38] I. Jeon, Existence of getting solutions for coagulation-fragmentation equations. Commun. Math. Phys. 194 (1998) 541–567. | MR | Zbl | DOI

[39] D. D. Keck and D. M. Bortz, Numerical simulation of solutions and moments of the Smoluchowski coagulation equation., Preprint (2013). | arXiv

[40] W. Lamb, Existence and uniqueness results for the continuous coagulation and fragmentation equation. Math. Models Methods Appl. Sci. 27 (2004) 703–721. | MR | Zbl | DOI

[41] A. Lasota, J. Myjak and T. Szarek, Markov operators with a unique invariant measure. J. Math. Anal. App. 276 (2002) 343–356. | MR | Zbl | DOI

[42] P. Laurençot, On a class of continuous coagulation–fragmentation equations. J. Differ. Equ. 167 (2000) 245–274. | MR | Zbl | DOI

[43] P. Laurençot and S. Mischler, Global existence for the discrete diffusive coagulation–fragmentation equations in L 1 . Rev. Mat. Iberoam. 18 (2002) 731–745. | MR | Zbl | DOI

[44] P. Laurençot and S. Mischler, From the discrete to the continuous coagulation fragmentation equations. Proc. R. Soc. Edinburgh Sect. A: Math. 132 (2002) 1219–1248. | MR | Zbl | DOI

[45] P. Laurençot and S. Mischler, On coalescence equations and related models, edited by P. Degond, L. Pareschi and G. Russo. In: Modeling and Computational Methods for Kinetic Equations. Boston, Birkhäuser (2004) 321–356. | MR | Zbl | DOI

[46] H. Liu, R. Gröpler and G. Warnecke, A high order positivity preserving DG method for coagulation–fragmentation equations. SIAM J. Sci. Comput. 41 (2019) 448–465. | MR | DOI

[47] D. J. Mclaughlin, W. Lamb and A. C. Mcbride, An existence and uniqueness result for a coagulation and multiple-fragmentation equation. SIAM J. Math. Anal. 28 (1997) 1173–1190. | MR | Zbl | DOI

[48] Z. A. Melzak, A scalar transport equation. Trans. Am. Math. Soc. 85 (1957) 547–560. | MR | Zbl | DOI

[49] H. Müller, Zur Allgemeinen Theorie der Raschen Koagulation. Fortschrittsberichte über Kolloide und Polymere 27 (1928) 223–250. | DOI

[50] J. R. Norris, Smoluchowski’s coagulation equation: uniqueness, non-uniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Probab. 9 (1999) 78–109. | MR | Zbl | DOI

[51] D. Pauly and G. R. Morgan, Length-Based Methods in Fisheries Research. WorldFish 13 (1987).

[52] W. E. Ricker, Stock and recruitment. J. Fisheries Board Can. 11 (1954) 559–623. | DOI

[53] R. Rudnicki and R. Wieczorek, Fragmentation-coagulation models of phytoplankton. Bull. Polish Acad. Sci. Math. 54 (2006) 175–191. | MR | Zbl | DOI

[54] R. Singh, J. Saha and J. Kumar, Adomian decomposition method for solving fragmentation and aggregation population balance equations. J. Appl. Math. Comput. 48 (2014) 265–292. | MR | Zbl | DOI

[55] M. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Phys. Z. 17 (1916) 557–571, 585–599.

[56] I. W. Stewart, A global existence theorem for the general coagulation–fragmentation equation with unbounded kernels. Math. Methods Appli. Sci. 11 (1989) 627–648. | MR | Zbl | DOI

Cité par Sources :