A virtual element discretization for the time dependent Navier–Stokes equations in stream-function formulation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2535-2566

In this work, a new Virtual Element Method (VEM) of arbitrary order k ≥ 2 for the time dependent Navier–Stokes equations in stream-function form is proposed and analyzed. Using suitable projection operators, the bilinear and trilinear terms are discretized by only using the proposed degrees of freedom associated with the virtual space. Under certain assumptions on the computational domain, error estimations are derived and shown that the method is optimally convergent in both space and time variables. Finally, to justify the theoretical analysis, four benchmark examples are examined numerically.

DOI : 10.1051/m2an/2021058
Classification : 65N30, 65N12, 76D07, 65N15
Keywords: Virtual element method, Navier–Stokes equations, time dependent problem, stream-function
@article{M2AN_2021__55_5_2535_0,
     author = {Adak, Dibyendu and Mora, David and Natarajan, Sundararajan and Silgado, Alberth},
     title = {A virtual element discretization for the time dependent {Navier{\textendash}Stokes} equations in stream-function formulation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2535--2566},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021058},
     mrnumber = {4332962},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021058/}
}
TY  - JOUR
AU  - Adak, Dibyendu
AU  - Mora, David
AU  - Natarajan, Sundararajan
AU  - Silgado, Alberth
TI  - A virtual element discretization for the time dependent Navier–Stokes equations in stream-function formulation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2535
EP  - 2566
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021058/
DO  - 10.1051/m2an/2021058
LA  - en
ID  - M2AN_2021__55_5_2535_0
ER  - 
%0 Journal Article
%A Adak, Dibyendu
%A Mora, David
%A Natarajan, Sundararajan
%A Silgado, Alberth
%T A virtual element discretization for the time dependent Navier–Stokes equations in stream-function formulation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2535-2566
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021058/
%R 10.1051/m2an/2021058
%G en
%F M2AN_2021__55_5_2535_0
Adak, Dibyendu; Mora, David; Natarajan, Sundararajan; Silgado, Alberth. A virtual element discretization for the time dependent Navier–Stokes equations in stream-function formulation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2535-2566. doi: 10.1051/m2an/2021058

[1] D. Adak and S. Natarajan, On the H 1 conforming virtual element method for time dependent Stokes equation. Math. Comput. Sci. 15 (2021) 135–154. | MR | DOI

[2] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edition. In: Vol. 140 of Pure and Applied Mathematics. Academic Press, New York (2003). | MR | Zbl

[3] B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini and A. Russo, Equivalent projectors for virtual element methods. Comput. Math. App. 66 (2013) 376–391. | MR

[4] P. F. Antonietti, L. Beirão Da Veiga, D. Mora and M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. | MR | Zbl | DOI

[5] P. F. Antonietti, L. Beirão Da Veiga, S. Scacchi and M. Verani, A C 1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 36–56. | MR | DOI

[6] L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | MR | Zbl | DOI

[7] L. Beirão Da Veiga, F. Brezzi, L. D. Marini and A. Russo, The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | MR | Zbl | DOI

[8] L. Beirão Da Veiga, C. Lovadina and G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. | MR | Numdam | DOI

[9] L. Beirão Da Veiga, C. Lovadina and G. Vacca, Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56 (2018) 1210–1242. | MR | DOI

[10] L. Beirão Da Veiga, D. Mora and G. Rivera, Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates. Math. Comput. 88 (2019) 149–178. | MR | DOI

[11] L. Beirão Da Veiga, D. Mora and G. Vacca, The Stokes complex for virtual elements with application to Navier-Stokes flows. J. Sci. Comput. 81 (2019) 990–1018. | MR | DOI

[12] L. Beirão Da Veiga, F. Dassi and A. Russo, A C 1 virtual element method on polyhedral meshes. Comput. Math. App. 79 (2020) 1936–1955. | MR

[13] L. Beirão Da Veiga, F. Dassi and G. Vacca, The Stokes complex for virtual elements in three dimensions. Math. Models Methods Appl. Sci. 30 (2020) 477–512. | MR | DOI

[14] G. Ben-Yu, H. Li-Ping and M. De-Kang, On the two-dimensional Navier-Stokes equations in stream function form. J. Math. Anal. App. 205 (1997) 1–31. | MR | Zbl | DOI

[15] S. C. Brenner and R. L. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York (2008). | MR | Zbl | DOI

[16] F. Brezzi and L. D. Marini, Virtual elements for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | MR | Zbl | DOI

[17] E. Cáceres and G. N. Gatica, A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37 (2017) 296–331. | MR | DOI

[18] A. Cangiani, V. Gyrya and G. Manzini, The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54 (2016) 3411–3435. | MR | DOI

[19] A. Cangiani, G. Manzini and O. J. Sutton, Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. | MR

[20] M. Cayco and R. A. Nicolaides, Finite element technique for optimal pressure recovery from stream function formulation of viscous flows. Math. Comput. 46 (1986) 371–377. | MR | Zbl | DOI

[21] C. Chinosi and L. D. Marini, Virtual element method for fourth order problems: L 2 -estimates. Comput. Math. App. 72 (2016) 1959–1967. | MR

[22] A. J. Chorin, Numerical solution for the Navier-Stokes equations. Math. Comput. 22 (1968) 745–762. | MR | Zbl | DOI

[23] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. SIAM, 2002. | MR | DOI

[24] F. Dassi and G. Vacca, Bricks for the mixed high-order virtual element method: projectors and differential operators. Appl. Numer. Math. 155 (2020) 140–159. | MR | DOI

[25] E. Foster, T. Iliescu and Z. Wang, A finite element discretization of the stream function formulation of the stationary quasi-geostrophic equations of the ocean. Comput. Methods Appl. Mech. Eng. 261/262 (2013) 105–117. | MR | Zbl | DOI

[26] G. N. Gatica, M. Munar and F. Sequeira, A mixed virtual element method for the Navier-Stokes equations. Math. Models Methods Appl. Sci. 28 (2018) 2719–2762. | MR | DOI

[27] V. Girault and P. A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, 749. Springer-Verlag, Berlin-New York (1979). | MR | Zbl | DOI

[28] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986). | MR | Zbl | DOI

[29] P. Grisvard, Elliptic Problems in Non-Smooth Domains. Pitman, Boston (1985). | MR | Zbl

[30] D. Irisarri and G. Hauke, Stabilized virtual element methods for the unsteady incompressible Navier-Stokes equations. Calcolo 56 (2019) 1–21. | MR | DOI

[31] M. J. Lai, C. Liu and P. Wenston, Bivariate spline method for numerical solution of time evolution Navier-Stokes equations over polygons in stream function formulation. Numer. Methods Part. Diff. Equ. 19 (2003) 776–827. | MR | Zbl | DOI

[32] A. Linke and L. G. Rebholz, Pressure-induced locking in mixed methods for time-dependent (Navier–)Stokes equations. J. Comput. Phys. 388 (2019) 350–356. | MR | DOI

[33] X. Liu and Z. Chen, The nonconforming virtual element method for the Navier-Stokes equations. Adv. Comput. Math. 45 (2019) 51–74. | MR | DOI

[34] X. Liu, R. Li and Z. Chen, A virtual element method for the coupled Stokes-Darcy problem with the Beaver–Joseph–Saffman interface condition. Calcolo 56 (2019) 1–28. | MR

[35] D. Mora and I. Velásquez, Virtual element for the buckling problem of Kirchhoff-Love plates. Comput. Methods Appl. Mech. Eng. 360 (2020) 112687. | MR | DOI

[36] D. Mora, G. Rivera and I. Velásquez, A virtual element method for the vibration problem of Kirchhoff plates. ESAIM: M2AN 52 (2018) 1437–1456. | MR | Numdam | DOI

[37] A. Quarteroni and A. Valli, Numerical Aproximation of the Partial Differential Equation. Springer-Verlag, Berlin Heidelberg (1994). | MR | Zbl | DOI

[38] R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam (1977). | MR | Zbl

[39] G. Vacca, An H 1 -conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28 (2018) 159–194. | MR | DOI

[40] G. Vacca and L. Beirão Da Veiga, Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Part. Diff. Equ. 31 (2015) 2110–2134. | MR | DOI

[41] J. Zhao, B. Zhang, S. Mao and S. Chen, The divergence-free nonconforming virtual element for the Stokes problem. SIAM J. Numer. Anal. 57 (2019) 2730–2759. | MR | DOI

Cité par Sources :