In this work, a new Virtual Element Method (VEM) of arbitrary order k ≥ 2 for the time dependent Navier–Stokes equations in stream-function form is proposed and analyzed. Using suitable projection operators, the bilinear and trilinear terms are discretized by only using the proposed degrees of freedom associated with the virtual space. Under certain assumptions on the computational domain, error estimations are derived and shown that the method is optimally convergent in both space and time variables. Finally, to justify the theoretical analysis, four benchmark examples are examined numerically.
Keywords: Virtual element method, Navier–Stokes equations, time dependent problem, stream-function
@article{M2AN_2021__55_5_2535_0,
author = {Adak, Dibyendu and Mora, David and Natarajan, Sundararajan and Silgado, Alberth},
title = {A virtual element discretization for the time dependent {Navier{\textendash}Stokes} equations in stream-function formulation},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {2535--2566},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {5},
doi = {10.1051/m2an/2021058},
mrnumber = {4332962},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2021058/}
}
TY - JOUR AU - Adak, Dibyendu AU - Mora, David AU - Natarajan, Sundararajan AU - Silgado, Alberth TI - A virtual element discretization for the time dependent Navier–Stokes equations in stream-function formulation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - 2535 EP - 2566 VL - 55 IS - 5 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2021058/ DO - 10.1051/m2an/2021058 LA - en ID - M2AN_2021__55_5_2535_0 ER -
%0 Journal Article %A Adak, Dibyendu %A Mora, David %A Natarajan, Sundararajan %A Silgado, Alberth %T A virtual element discretization for the time dependent Navier–Stokes equations in stream-function formulation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P 2535-2566 %V 55 %N 5 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2021058/ %R 10.1051/m2an/2021058 %G en %F M2AN_2021__55_5_2535_0
Adak, Dibyendu; Mora, David; Natarajan, Sundararajan; Silgado, Alberth. A virtual element discretization for the time dependent Navier–Stokes equations in stream-function formulation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2535-2566. doi: 10.1051/m2an/2021058
[1] and , On the conforming virtual element method for time dependent Stokes equation. Math. Comput. Sci. 15 (2021) 135–154. | MR | DOI
[2] and , Sobolev Spaces, 2nd edition. In: Vol. 140 of Pure and Applied Mathematics. Academic Press, New York (2003). | MR | Zbl
[3] , , , and , Equivalent projectors for virtual element methods. Comput. Math. App. 66 (2013) 376–391. | MR
[4] , , and , A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. | MR | Zbl | DOI
[5] , , and , A virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 36–56. | MR | DOI
[6] , , , , and , Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | MR | Zbl | DOI
[7] , , and , The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | MR | Zbl | DOI
[8] , and , Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. | MR | Numdam | DOI
[9] , and , Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56 (2018) 1210–1242. | MR | DOI
[10] , and , Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates. Math. Comput. 88 (2019) 149–178. | MR | DOI
[11] , and , The Stokes complex for virtual elements with application to Navier-Stokes flows. J. Sci. Comput. 81 (2019) 990–1018. | MR | DOI
[12] , and , A virtual element method on polyhedral meshes. Comput. Math. App. 79 (2020) 1936–1955. | MR
[13] , and , The Stokes complex for virtual elements in three dimensions. Math. Models Methods Appl. Sci. 30 (2020) 477–512. | MR | DOI
[14] , and , On the two-dimensional Navier-Stokes equations in stream function form. J. Math. Anal. App. 205 (1997) 1–31. | MR | Zbl | DOI
[15] and , The Mathematical Theory of Finite Element Methods. Springer, New York (2008). | MR | Zbl | DOI
[16] and , Virtual elements for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | MR | Zbl | DOI
[17] and , A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37 (2017) 296–331. | MR | DOI
[18] , and , The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54 (2016) 3411–3435. | MR | DOI
[19] , and , Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. | MR
[20] and , Finite element technique for optimal pressure recovery from stream function formulation of viscous flows. Math. Comput. 46 (1986) 371–377. | MR | Zbl | DOI
[21] and , Virtual element method for fourth order problems: -estimates. Comput. Math. App. 72 (2016) 1959–1967. | MR
[22] , Numerical solution for the Navier-Stokes equations. Math. Comput. 22 (1968) 745–762. | MR | Zbl | DOI
[23] , The Finite Element Method for Elliptic Problems. SIAM, 2002. | MR | DOI
[24] and , Bricks for the mixed high-order virtual element method: projectors and differential operators. Appl. Numer. Math. 155 (2020) 140–159. | MR | DOI
[25] , and , A finite element discretization of the stream function formulation of the stationary quasi-geostrophic equations of the ocean. Comput. Methods Appl. Mech. Eng. 261/262 (2013) 105–117. | MR | Zbl | DOI
[26] , and , A mixed virtual element method for the Navier-Stokes equations. Math. Models Methods Appl. Sci. 28 (2018) 2719–2762. | MR | DOI
[27] and , Finite Element Approximation of the Navier-Stokes Equations, 749. Springer-Verlag, Berlin-New York (1979). | MR | Zbl | DOI
[28] and , Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986). | MR | Zbl | DOI
[29] , Elliptic Problems in Non-Smooth Domains. Pitman, Boston (1985). | MR | Zbl
[30] and , Stabilized virtual element methods for the unsteady incompressible Navier-Stokes equations. Calcolo 56 (2019) 1–21. | MR | DOI
[31] , and , Bivariate spline method for numerical solution of time evolution Navier-Stokes equations over polygons in stream function formulation. Numer. Methods Part. Diff. Equ. 19 (2003) 776–827. | MR | Zbl | DOI
[32] and , Pressure-induced locking in mixed methods for time-dependent (Navier–)Stokes equations. J. Comput. Phys. 388 (2019) 350–356. | MR | DOI
[33] and , The nonconforming virtual element method for the Navier-Stokes equations. Adv. Comput. Math. 45 (2019) 51–74. | MR | DOI
[34] , and , A virtual element method for the coupled Stokes-Darcy problem with the Beaver–Joseph–Saffman interface condition. Calcolo 56 (2019) 1–28. | MR
[35] and , Virtual element for the buckling problem of Kirchhoff-Love plates. Comput. Methods Appl. Mech. Eng. 360 (2020) 112687. | MR | DOI
[36] , and , A virtual element method for the vibration problem of Kirchhoff plates. ESAIM: M2AN 52 (2018) 1437–1456. | MR | Numdam | DOI
[37] and , Numerical Aproximation of the Partial Differential Equation. Springer-Verlag, Berlin Heidelberg (1994). | MR | Zbl | DOI
[38] , Navier-Stokes Equations. North-Holland, Amsterdam (1977). | MR | Zbl
[39] , An -conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28 (2018) 159–194. | MR | DOI
[40] and , Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Part. Diff. Equ. 31 (2015) 2110–2134. | MR | DOI
[41] , , and , The divergence-free nonconforming virtual element for the Stokes problem. SIAM J. Numer. Anal. 57 (2019) 2730–2759. | MR | DOI
Cité par Sources :





