A Krylov subspace type method for Electrical Impedance Tomography
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2827-2847

Electrical Impedance Tomography (EIT) is a well-known imaging technique for detecting the electrical properties of an object in order to detect anomalies, such as conductive or resistive targets. More specifically, EIT has many applications in medical imaging for the detection and location of bodily tumors since it is an affordable and non-invasive method, which aims to recover the internal conductivity of a body using voltage measurements resulting from applying low frequency current at electrodes placed at its surface. Mathematically, the reconstruction of the internal conductivity is a severely ill-posed inverse problem and yields a poor quality image reconstruction. To remedy this difficulty, at least in part, we regularize and solve the nonlinear minimization problem by the aid of a Krylov subspace-type method for the linear sub problem during each iteration. In EIT, a tumor or general anomaly can be modeled as a piecewise constant perturbation of a smooth background, hence, we solve the regularized problem on a subspace of relatively small dimension by the Flexible Golub-Kahan process that provides solutions that have sparse representation. For comparison, we use a well-known modified Gauss–Newton algorithm as a benchmark. Using simulations, we demonstrate the effectiveness of the proposed method. The obtained reconstructions indicate that the Krylov subspace method is better adapted to solve the ill-posed EIT problem and results in higher resolution images and faster convergence compared to reconstructions using the modified Gauss–Newton algorithm.

DOI : 10.1051/m2an/2021057
Classification : 65N20
Keywords: EIT, regularization, Golub-Kahan, sparsity, Krylov subspace methods
@article{M2AN_2021__55_6_2827_0,
     author = {Pasha, Mirjeta and Kupis, Shyla and Ahmad, Sanwar and Khan, Taufiquar},
     title = {A {Krylov} subspace type method for {Electrical} {Impedance} {Tomography}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2827--2847},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/m2an/2021057},
     mrnumber = {4344861},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021057/}
}
TY  - JOUR
AU  - Pasha, Mirjeta
AU  - Kupis, Shyla
AU  - Ahmad, Sanwar
AU  - Khan, Taufiquar
TI  - A Krylov subspace type method for Electrical Impedance Tomography
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2827
EP  - 2847
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021057/
DO  - 10.1051/m2an/2021057
LA  - en
ID  - M2AN_2021__55_6_2827_0
ER  - 
%0 Journal Article
%A Pasha, Mirjeta
%A Kupis, Shyla
%A Ahmad, Sanwar
%A Khan, Taufiquar
%T A Krylov subspace type method for Electrical Impedance Tomography
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2827-2847
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021057/
%R 10.1051/m2an/2021057
%G en
%F M2AN_2021__55_6_2827_0
Pasha, Mirjeta; Kupis, Shyla; Ahmad, Sanwar; Khan, Taufiquar. A Krylov subspace type method for Electrical Impedance Tomography. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2827-2847. doi: 10.1051/m2an/2021057

[1] G. Alléon, B. Carpentieri, I. S. Duff, L. Giraud, E. Martin and G. Sylvand, Efficient parallel iterative solvers for the solution of large dense linear systems arising from the boundary element method in electromagnetism. In: Proceedings of the International Conference on Supercomputing in Nuclear Application (SNA), Paris (2003).

[2] A. B. Bakushinskii, The problem of the convergence of the iteratively regularized Gauss-Newton method. Comput. Math. Math. Phys. 32 (1992) 1353–1359. | MR | Zbl

[3] A. B. Bakushinskii, Iterative methods for solving nonlinear operator equations without regularity. A new approach. Doklady Akademii Nauk 330 (1993) 282–284. | Zbl | MR

[4] A. Bakushinsky and A. Smirnova, On application of generalized discrepancy principle to iterative methods for nonlinear ill-posed problems. Numer. Funct. Anal. Optim. 26 (2005) 35–48. | MR | Zbl | DOI

[5] J. M. Bardsley, MCMC-based image reconstruction with uncertainty quantification. SIAM J. Sci. Comput. 34 (2012) A1316–A1332. | MR | Zbl | DOI

[6] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. Van Der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM (1994). | MR | Zbl

[7] R. H. Bayford, Bioimpedance tomography (electrical impedance tomography). Annu. Rev. Biomed. Eng. 8 (2006) 63–91. | DOI

[8] A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18 (2009) 2419–2434. | MR | DOI

[9] M. Benzi, Preconditioning techniques for large linear systems: A survey. J. Comput. Phys. 182 (2002) 418–477. | MR | Zbl | DOI

[10] B. Blaschke, A. Neubauer and O. Scherzer, On convergence rates for the iteratively regularized Gauss-Newton method. IMA J. Numer. Anal. 17 (1997) 421–436. | MR | Zbl | DOI

[11] J. C. R. Bloch and S. Heybrock, A nested Krylov subspace method for the overlap operator. Preprint (2009). | arXiv

[12] L. Borcea, Electrical impedance tomography. Inverse Prob. 18 (2002) R99. | MR | Zbl | DOI

[13] A. Borsic, C. Comina, S. Foti, R. Lancellotta and G. Musso, Imaging heterogeneities with electrical impedance tomography: laboratory results. Géotechnique 55 (2005) 539–547. | DOI

[14] A. M. Bruaset, A Survey of Preconditioned Iterative Methods. CRC Press 328 (1995). | MR | Zbl

[15] A. Buccini, M. Pasha and L. Reichel, Modulus-based iterative methods for constrained p - q minimization. Inverse Prob. 36 (2020) 084001. | MR | DOI

[16] A. Buccini, M. Pasha and L. Reichel, Generalized singular value decomposition with iterated Tikhonov regularization. J. Comput. Appl. Math. 373 (2020) 112276. | MR | DOI

[17] A. Buccini, M. Pasha and L. Reichel, Linearized Krylov subspace Bregman iteration with nonnegativity constraint. Numer. Algorithms 87 (2021) 1177–1200. | MR | DOI

[18] K. Chen, Matrix Preconditioning Techniques and Applications. Cambridge University Press 19 (2005). | MR | Zbl | DOI

[19] M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography. SIAM Rev. 41 (1999) 85–101. | MR | Zbl | DOI

[20] K.-S. Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng. 36 (1989) 918–924. | DOI

[21] J. Chung and S. Gazzola, Flexible Krylov methods for p regularization. SIAM J. Sci. Comput. 41 (2019) S149–S171. | MR | DOI

[22] J. Chung and S. Gazzola, Computational methods for large-scale inverse problems: A survey on hybrid projection methods. Preprint (2021). | arXiv | MR

[23] C. Comina, R. M. Cosentini, G. Della Vecchia, S. Foti and G. Musso, 3D-electrical resistivity tomography monitoring of salt transport in homogeneous and layered soil samples. Acta Geotech. 6 (2011) 195–203. | DOI

[24] R. M. Cosentini, G. Della Vecchia, S. Foti and G. Musso, Estimation of the hydraulic parameters of unsaturated samples by electrical resistivity tomography. Géotechnique 62 (2012) 583–594. | DOI

[25] W. Daily, A. Ramirez, D. Labrecque and J. Nitao, Electrical resistivity tomography of vadose water movement. Water Res. Res. 28 (1992) 1429–1442. | DOI

[26] E. De Sturler, Truncation strategies for optimal Krylov subspace methods. SIAM J. Numer. Anal. 36 (1999) 864–889. | MR | Zbl | DOI

[27] V. Dolean and S. Lanteri, Parallel multigrid methods for the calculation of unsteady flows on unstructured grids: algorithmic aspects and parallel performances on clusters of PCS. Parallel Comput. 30 (2004) 503–525. | MR | DOI

[28] D. L. Donoho, Denoising by soft-thresholding. IEEE Trans. Inf. Theory 41 (1995) 613–627. | MR | Zbl | DOI

[29] J. Drkošová, A. Greenbaum, M. Rozložnk and Z. Strakoš, Numerical stability of GMRES. BIT Numer. Math. 35 (1995) 309–330. | MR | Zbl | DOI

[30] H. C. Elman, O. G. Ernst and D. P O’Leary, A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations. SIAM J. Sci. Comput. 23 (2001) 1291–1315. | MR | Zbl | DOI

[31] S. Gazzola and J. G. Nagy, Generalized Arnoldi-Tikhonov method for sparse reconstruction. SIAM J. Sci. Comput. 36 (2014) B225–B247. | MR | Zbl | DOI

[32] S. Gazzola, J. G. Nagy and M. Sabaté Landman, Iteratively reweighted FGMRES and FLSQR for sparse reconstruction. SIAM J. Sci. Comput. (2021) S47–S69. | MR | DOI

[33] A. Ghai, C. Lu and X. Jiao, A comparison of preconditioned Krylov subspace methods for large-scale nonsymmetric linear systems. Numer. Linear Algebra App. 26 (2019) e2215. | MR | DOI

[34] T. Goldstein and S. Osher, The split bregman method for 1 -regularized problems. SIAM J. Imaging Sci. 2 (2009) 323–343. | MR | Zbl | DOI

[35] G. H. Golub and C. F. Van Loan, Matrix Computations. Johns Hopkins University Press (1989). | MR | Zbl

[36] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th edition. Johns Hopkins University Press, Baltimore (2013). | MR | Zbl | DOI

[37] G. H. Golub and Q. Ye, Inexact preconditioned conjugate gradient method with inner-outer iteration. SIAM J. Sci. Comput. 21 (1999) 1305–1320. | MR | Zbl | DOI

[38] G. H. Golub and Q. Ye, Inexact inverse iteration for generalized eigenvalue problems. BIT Numer. Math. 40 (2000) 671–684. | MR | Zbl | DOI

[39] M. Hanke and M. Brühl, Recent progress in electrical impedance tomography. Inverse Prob. 19 (2003) S65. | MR | Zbl | DOI

[40] P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms. SIAM (2010). | MR | Zbl | DOI

[41] I. Hnĕtynková, M. Plešinger and Z. Strakoš, The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level in the data. BIT Numer. Math. 49 (2009) 669–696. | MR | Zbl | DOI

[42] T. Hohage, Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem. Inverse Prob. 13 (1997) 1279–1299. | MR | Zbl | DOI

[43] G. Huang, A. Lanza, S. Morigi, L. Reichel and F. Sgallari, Majorization-minimization generalized Krylov subspace methods for p - q optimization applied to image restoration. BIT Numer. Math. 57 (2017) 351–378. | MR | DOI

[44] I. C. F. Ipsen, A note on preconditioning nonsymmetric matrices. SIAM J. Sci. Comput. 23 (2001) 1050–1051. | MR | Zbl | DOI

[45] D. Isaacson, J. L. Mueller, J. C. Newell and S. Siltanen, Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography. IEEE Trans. Med. Imaging 23 (2004) 821–828. | DOI

[46] O. Isaksen, A. S. Dico and E. A. Hammer, A capacitance-based tomography system for interface measurement in separation vessels. Meas. Sci. Technol. 5 (1994) 1262. | DOI

[47] B. Jin and P. Maass, An analysis of electrical impedance tomography with applications to Tikhonov regularization. ESAIM: Control Optim. Calculus Variations 18 (2012) 1027–1048. | MR | Zbl | Numdam

[48] B. Jin and P. Maass, Sparsity regularization for parameter identification problems. Inverse Prob. 28 (2012) 123001. | MR | Zbl | DOI

[49] B. Jin, T. Khan and P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization. Int. J. Numer. Methods Eng. 89 (2012) 337–353. | MR | Zbl | DOI

[50] J. P. Kaipio, V. Kolehmainen, E. Somersalo and M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography. Inverse Prob. 16 (2000) 1487–1522. | MR | Zbl | DOI

[51] J. P. Kaipio, A. Seppänen, E. Somersalo and H. Haario, Posterior covariance related optimal current patterns in electrical impedance tomography. Inverse Prob. 20 (2004) 919. | MR | Zbl | DOI

[52] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems. Oxford University Press 36 (2008). | MR | Zbl

[53] A. Lanza, S. Morigi, L. Reichel and F. Sgallari, A generalized Krylov subspace method for p - q minimization. SIAM J. Sci. Comput. 37 (2015) S30–S50. | MR | Zbl | DOI

[54] A. Lechleiter and A. Rieder, Newton regularizations for impedance tomography: A numerical study. Inverse Prob. 22 (2006) 1967. | MR | Zbl | DOI

[55] B. Lewis and L. Reichel, Arnoldi-Tikhonov regularization methods. J. Comput. Appl. Math. 226 (2009) 92–102. | MR | Zbl | DOI

[56] J. Liesen, M. Rozložník and Z. Strakoš, Least squares residuals and minimal residual methods. SIAM J. Sci. Comput. 23 (2002) 1503–1525. | MR | Zbl | DOI

[57] A. Nissinen, L. M. Heikkinen and J. P. Kaipio, The Bayesian approximation error approach for electrical impedance tomography-experimental results. Meas. Sci. Technol. 19 (2007) 015501. | DOI

[58] A. Nissinen, L. M. Heikkinen, V. Kolehmainen and J. P. Kaipio, Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography. Meas. Sci. Technol. 20 (2009) 105504. | DOI

[59] J. Nocedal and S. J. Wright, Numerical Optimization. Springer (2006). | MR | Zbl

[60] Y. Notay, Flexible conjugate gradients. SIAM J. Sci. Comput. 22 (2000) 1444–1460. | MR | Zbl | DOI

[61] C. C. Paige, M. Rozložník and Z. Strakoš, Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES. SIAM J. Matrix Anal. App. 28 (2006) 264–284. | MR | Zbl | DOI

[62] R. P. Patterson, Electrical impedance tomography: methods, history, and applications (institute of physics medical physics series). Phys. Med. Biol. 50 (2005) 2427. | DOI

[63] P. Rodrguez and B. Wohlberg, An efficient algorithm for sparse representations with l$$ data fidelity term. In: Proceedings of 4th IEEE Andean Technical Conference (ANDESCON) (2008).

[64] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14 (1993) 461–469. | MR | Zbl | DOI

[65] Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM (2003). | MR | Zbl | DOI

[66] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1986) 856–869. | MR | Zbl | DOI

[67] V. Simoncini and D. B. Szyld, Flexible inner-outer Krylov subspace methods. SIAM J. Numer. Anal. 40 (2002) 2219–2239. | MR | Zbl | DOI

[68] V. Simoncini and D. B. Szyld, Recent computational developments in Krylov subspace methods for linear systems. Numer. Linear Algebra App. 14 (2007) 1–59. | MR | Zbl | DOI

[69] G. L. G. Sleijpen, H. A. Van Der Vorst and J. Modersitzki, Differences in the effects of rounding errors in Krylov solvers for symmetric indefinite linear systems. SIAM J. Matrix Anal. App. 22 (2001) 726–751. | MR | Zbl | DOI

[70] A. Smirnova, R. A. Renaut and T. Khan, Convergence and application of a modified iteratively regularized Gauss-Newton algorithm. Inverse Prob. 23 (2007) 1547–1563. | MR | Zbl | DOI

[71] E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52 (1992) 1023–1040. | MR | Zbl | DOI

[72] D. B. Szyld and J. A. Vogel, FQMR: A flexible quasi-minimal residual method with inexact preconditioning. SIAM J. Sci. Comput. 23 (2001) 363–380. | MR | Zbl | DOI

[73] L. Tenorio, An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems. SIAM (2017). | MR

[74] J. Van Den Eshof and G. L. G. Sleijpen, Inexact Krylov subspace methods for linear systems. SIAM J. Matrix Anal. App. 26 (2004) 125–153. | MR | Zbl | DOI

[75] H. A. Van Der Vorst and C. Vuik, GMRESR: a family of nested GMRES methods. Numer. Linear Algebra App. 1 (1994) 369–386. | MR | Zbl | DOI

[76] C. F. Van Loan and G. H. Golub, Matrix Computations, Johns Hopkins University Press Baltimore (1983). | MR | Zbl

[77] P. J. Vauhkonen, M. Vauhkonen, A. Seppänen and J. P. Kaipio, Iterative image reconstruction in three-dimensional electrical impedance tomography. Inverse Prob. Design Optim. 1 (2004) 152.

[78] J. A. Vogel, Flexible BICG and flexible BI-CGSTAB for nonsymmetric linear systems. Appl. Math. Comput. 188 (2007) 226–233. | MR | Zbl

[79] C. Vuik, New insights in GMRES-like methods with variable preconditioners. J. Comput. Appl. Math. 61 (1995) 189–204. | MR | Zbl | DOI

[80] C. Vuik and H. A. Van Der Vorst, A comparison of some GMRES-like methods. Linear Algebra App. 160 (1992) 131–162. | MR | Zbl | DOI

[81] K. Wang and M. A. Anastasio, Photoacoustic and thermoacoustic tomography: image formation principles. In: Handbook of Mathematical Methods in Imaging (2015). | MR | Zbl | DOI

[82] J. S. Warsa, M. Benzi, T. A. Wareing and J. E. Morel, Preconditioning a mixed discontinuous finite element method for radiation diffusion. Numer. Linear Algebra App. 11 (2004) 795–811. | MR | Zbl | DOI

Cité par Sources :