We construct local projections into canonical finite element spaces that appear in the finite element exterior calculus. These projections are bounded in L2 and commute with the exterior derivative.
Keywords: Cochain projection, commuting projection, finite element exterior calculus
@article{M2AN_2021__55_5_2169_0,
author = {Arnold, Douglas and Guzm\'an, Johnny},
title = {Local $L^2$-bounded commuting projections in {FEEC}},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {2169--2184},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {5},
doi = {10.1051/m2an/2021054},
mrnumber = {4323408},
zbl = {1483.65175},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2021054/}
}
TY - JOUR AU - Arnold, Douglas AU - Guzmán, Johnny TI - Local $L^2$-bounded commuting projections in FEEC JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - 2169 EP - 2184 VL - 55 IS - 5 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2021054/ DO - 10.1051/m2an/2021054 LA - en ID - M2AN_2021__55_5_2169_0 ER -
%0 Journal Article %A Arnold, Douglas %A Guzmán, Johnny %T Local $L^2$-bounded commuting projections in FEEC %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P 2169-2184 %V 55 %N 5 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2021054/ %R 10.1051/m2an/2021054 %G en %F M2AN_2021__55_5_2169_0
Arnold, Douglas; Guzmán, Johnny. Local $L^2$-bounded commuting projections in FEEC. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2169-2184. doi: 10.1051/m2an/2021054
[1] , Finite Element Exterior Calculus. SIAM (2018). | MR
[2] , and , Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006) 1–155. | MR | Zbl | DOI
[3] , and , Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47 (2010) 281–354. | MR | Zbl | DOI
[4] and , Smoothed projections in finite element exterior calculus. Math. Comput. 77 (2008) 813–829. | MR | Zbl | DOI
[5] and , On Bogovski and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265 (2010) 297–320. | MR | Zbl | DOI
[6] and , , and -conforming projection-based interpolation in three dimensions: Quasi-optimal -interpolation estimates. Comput. Methods Appl. Mech. Eng. 194 (2005) 267–296. | MR | Zbl
[7] , Localized pointwise error estimates for mixed finite element methods. Math. Comput. 73 (2004) 1623–1653. | MR | Zbl | DOI
[8] , , and , Equivalence of local-and global-best approximations, a simple stable local commuting projector, and optimal approximation estimates in . Preprint: (2019). | arXiv | MR | Zbl
[9] , , Local bounded cochain projections. Math. Comput. 83 (2014) 2631–2656. | MR | Zbl | DOI
[10] and , Double complexes and local cochain projections. Numer. Methods Partial Differ. Equ. 31 (2015) 541–551. | MR | Zbl | DOI
[11] and , Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations. ESAIM: M2AN 23 (1989) 103–128. | MR | Zbl | Numdam | DOI
[12] and , Elliptic Partial Differential Equations of Second Order., Springer (2015). | Zbl | MR
[13] and , Estimation of the continuity constants for Bogovskii and regularized Poincaré integral operators. Preprint: (2020). | arXiv | MR | Zbl
[14] and , On commuting -version projection-based interpolation on tetrahedra. Math. Comput. 89 (2020) 45–87. | MR | Zbl | DOI
[15] , A multilevel decomposition result in h(curl)In: Proceedings from the 8th European Multigrid, Multilevel, and Multiscale Conference, edited by and .
[16] , Geometric Integration Theory. Dover Publications (2012). | MR | Zbl
Cité par Sources :





