Local L 2 -bounded commuting projections in FEEC
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2169-2184

We construct local projections into canonical finite element spaces that appear in the finite element exterior calculus. These projections are bounded in L2 and commute with the exterior derivative.

DOI : 10.1051/m2an/2021054
Classification : 65N30
Keywords: Cochain projection, commuting projection, finite element exterior calculus
@article{M2AN_2021__55_5_2169_0,
     author = {Arnold, Douglas and Guzm\'an, Johnny},
     title = {Local $L^2$-bounded commuting projections in {FEEC}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2169--2184},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021054},
     mrnumber = {4323408},
     zbl = {1483.65175},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021054/}
}
TY  - JOUR
AU  - Arnold, Douglas
AU  - Guzmán, Johnny
TI  - Local $L^2$-bounded commuting projections in FEEC
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2169
EP  - 2184
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021054/
DO  - 10.1051/m2an/2021054
LA  - en
ID  - M2AN_2021__55_5_2169_0
ER  - 
%0 Journal Article
%A Arnold, Douglas
%A Guzmán, Johnny
%T Local $L^2$-bounded commuting projections in FEEC
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2169-2184
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021054/
%R 10.1051/m2an/2021054
%G en
%F M2AN_2021__55_5_2169_0
Arnold, Douglas; Guzmán, Johnny. Local $L^2$-bounded commuting projections in FEEC. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2169-2184. doi: 10.1051/m2an/2021054

[1] D. N. Arnold, Finite Element Exterior Calculus. SIAM (2018). | MR

[2] D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006) 1–155. | MR | Zbl | DOI

[3] D. Arnold, R. Falk and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47 (2010) 281–354. | MR | Zbl | DOI

[4] S. Christiansen and R. Winther, Smoothed projections in finite element exterior calculus. Math. Comput. 77 (2008) 813–829. | MR | Zbl | DOI

[5] M. Costabel and A. Mcintosh, On Bogovski and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265 (2010) 297–320. | MR | Zbl | DOI

[6] L. Demkowicz and A. Buffa, H 1 , H ( curl ) and H ( div ) -conforming projection-based interpolation in three dimensions: Quasi-optimal p -interpolation estimates. Comput. Methods Appl. Mech. Eng. 194 (2005) 267–296. | MR | Zbl

[7] A. Demlow, Localized pointwise error estimates for mixed finite element methods. Math. Comput. 73 (2004) 1623–1653. | MR | Zbl | DOI

[8] A. Ern, T. Gudi, I. Smears and M. Vohralk, Equivalence of local-and global-best approximations, a simple stable local commuting projector, and optimal h p approximation estimates in 𝐇 ( div ) . Preprint: (2019). | arXiv | MR | Zbl

[9] R. Falk, R. Winther, Local bounded cochain projections. Math. Comput. 83 (2014) 2631–2656. | MR | Zbl | DOI

[10] R. S. Falk and R. Winther, Double complexes and local cochain projections. Numer. Methods Partial Differ. Equ. 31 (2015) 541–551. | MR | Zbl | DOI

[11] L. Gastaldi and R. H. Nochetto, Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations. ESAIM: M2AN 23 (1989) 103–128. | MR | Zbl | Numdam | DOI

[12] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order., Springer (2015). | Zbl | MR

[13] J. Guzmán and A. J. Salgado, Estimation of the continuity constants for Bogovskii and regularized Poincaré integral operators. Preprint: (2020). | arXiv | MR | Zbl

[14] J. Melenk and C. Rojik, On commuting p -version projection-based interpolation on tetrahedra. Math. Comput. 89 (2020) 45–87. | MR | Zbl | DOI

[15] J. Schöberl, A multilevel decomposition result in h(curl)In: Proceedings from the 8th European Multigrid, Multilevel, and Multiscale Conference, edited by P. H. P. Wesseling and C. W. Oosterlee.

[16] H. Whitney, Geometric Integration Theory. Dover Publications (2012). | MR | Zbl

Cité par Sources :