The objective of this contribution is to develop a convergence analysis for SUPG-stabilized Virtual Element Methods in diffusion-convection problems that is robust also in the convection dominated regime. For the original method introduced in [Benedetto et al., CMAME 2016] we are able to show an “almost uniform” error bound (in the sense that the unique term that depends in an unfavourable way on the parameters is damped by a higher order mesh-size multiplicative factor). We also introduce a novel discretization of the convection term that allows us to develop error estimates that are fully robust in the convection dominated cases. We finally present some numerical result.
Keywords: Virtual element method, polygonal meshes, convection dominated problems, SUPG stabilization
@article{M2AN_2021__55_5_2233_0,
author = {Beir\~ao da Veiga, Lourenco and Dassi, Franco and Lovadina, Carlo and Vacca, Giuseppe},
title = {SUPG-stabilized virtual elements for diffusion-convection problems: a robustness analysis},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {2233--2258},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {5},
doi = {10.1051/m2an/2021050},
mrnumber = {4323403},
zbl = {1490.65267},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2021050/}
}
TY - JOUR AU - Beirão da Veiga, Lourenco AU - Dassi, Franco AU - Lovadina, Carlo AU - Vacca, Giuseppe TI - SUPG-stabilized virtual elements for diffusion-convection problems: a robustness analysis JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - 2233 EP - 2258 VL - 55 IS - 5 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2021050/ DO - 10.1051/m2an/2021050 LA - en ID - M2AN_2021__55_5_2233_0 ER -
%0 Journal Article %A Beirão da Veiga, Lourenco %A Dassi, Franco %A Lovadina, Carlo %A Vacca, Giuseppe %T SUPG-stabilized virtual elements for diffusion-convection problems: a robustness analysis %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P 2233-2258 %V 55 %N 5 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2021050/ %R 10.1051/m2an/2021050 %G en %F M2AN_2021__55_5_2233_0
Beirão da Veiga, Lourenco; Dassi, Franco; Lovadina, Carlo; Vacca, Giuseppe. SUPG-stabilized virtual elements for diffusion-convection problems: a robustness analysis. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2233-2258. doi: 10.1051/m2an/2021050
[1] , Sobolev spaces, In Vol. 65 of Pure and Applied Mathematics, Academic Press, New York-London (1975). | MR | Zbl
[2] , , , and , Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. | MR | Zbl | DOI
[3] , and , -Version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. 35 (2013) A1417–A1439. | MR | Zbl | DOI
[4] , , , , , and , Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains. Lect. Notes Comput. Sci. Eng. 50 (2016) 699–725. | MR | Zbl
[5] , and , The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50 (2016) 879–904. | MR | Zbl | Numdam | DOI
[6] and , Sharper error estimates for Virtual Elements and a bubble-enriched version (2020). | MR
[7] , , , , and , Basic principles of Virtual Element Methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | MR | Zbl | DOI
[8] , , and , The Hitchhiker’s Guide to the Virtual Element Method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | MR | Zbl | DOI
[9] , , and , Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal. 50 (2016) 727–747. | MR | Zbl | Numdam | DOI
[10] , , and , Virtual Element Method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26 (2016) 729–750. | MR | Zbl | DOI
[11] , and , High-order virtual element method on polyhedral meshes. Comput. Math. Appl. 74 (2017) 1110–1122. | MR | Zbl | DOI
[12] , and , Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. | MR | Zbl | DOI
[13] , and , A virtual element method for the miscible displacement of incompressible fluids in porous media. Comput. Methods Appl. Mech. Eng. 375 (2021) 113649. | MR | Zbl | DOI
[14] , , , and , A hybrid mortar virtual element method for discrete fracture network simulations. J. Comput. Phys. 306 (2016) 148–166. | MR | Zbl | DOI
[15] , , , and , Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 293 (2016) 18–40. | MR | Zbl | DOI
[16] , and , A globally conforming method for solving flow in discrete fracture networks using the Virtual Element Method. Finite Elem. Anal. Des. 109 (2016) 23–36. | DOI
[17] , and , SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 340 (2018) 500–529. | MR | Zbl | DOI
[18] and , The mathematical theory of finite element methods, 3rd edition. In Vol. 15 of Texts in Applied MathematicsSpringer, New York (2008). | MR | Zbl | DOI
[19] and , Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28 (2018) 1291–1336. | MR | Zbl | DOI
[20] , and , Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48 (2014) 1227–1240. | MR | Zbl | Numdam | DOI
[21] , and , -Version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24 (2014) 2009–2041. | MR | Zbl | DOI
[22] , , and , -Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM Math. Model. Numer. Anal. 50 (2016) 699–725. | MR | Zbl | Numdam | DOI
[23] , , and , A posteriori error estimates for the virtual element method. Numer. Math. 137 (2017) 857–893. | MR | Zbl | DOI
[24] , and , Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. | MR | Zbl
[25] and , Some error analysis on virtual element methods. Calcolo 55 (2018). | MR | Zbl | DOI
[26] , , , and , A fully coupled scheme using virtual element method and finite volume for poroelasticity. Comput. Geosci. 24 (2020) 381–403. | MR | Zbl | DOI
[27] and , Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Math. Acad. Sci. Paris 353 (2015) 31–34. | MR | Zbl | DOI
[28] , and , A discontinuous-skeletal method for advection-diffusion-reaction on general meshes. SIAM J. Numer. Anal. 53 (2015) 2135–2157. | MR | Zbl | DOI
[29] , and , Stabilized finite element methods. I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Eng. 95 (1992) 253–276. | MR | Zbl | DOI
[30] and , Dual virtual element method for discrete fractures networks. SIAM J. Sci. Comput. 40 (2018) B228–B258. | MR | Zbl | DOI
[31] and , Dual virtual element methods for discrete fracture matrix models. Oil Gas Sci. Technol. 74 (2019) 41. | DOI
[32] and , A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the streamline-upwind procedure. Finite Elem. Fluids (1982) 47–65.
[33] and , Numerical approximation of partial differential equations. Springer Science & Business Media, Vol. 23 (2008). | Zbl
Cité par Sources :





