SUPG-stabilized virtual elements for diffusion-convection problems: a robustness analysis
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2233-2258

The objective of this contribution is to develop a convergence analysis for SUPG-stabilized Virtual Element Methods in diffusion-convection problems that is robust also in the convection dominated regime. For the original method introduced in [Benedetto et al., CMAME 2016] we are able to show an “almost uniform” error bound (in the sense that the unique term that depends in an unfavourable way on the parameters is damped by a higher order mesh-size multiplicative factor). We also introduce a novel discretization of the convection term that allows us to develop error estimates that are fully robust in the convection dominated cases. We finally present some numerical result.

DOI : 10.1051/m2an/2021050
Classification : 65N15, 65N30
Keywords: Virtual element method, polygonal meshes, convection dominated problems, SUPG stabilization
@article{M2AN_2021__55_5_2233_0,
     author = {Beir\~ao da Veiga, Lourenco and Dassi, Franco and Lovadina, Carlo and Vacca, Giuseppe},
     title = {SUPG-stabilized virtual elements for diffusion-convection problems: a robustness analysis},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2233--2258},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021050},
     mrnumber = {4323403},
     zbl = {1490.65267},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021050/}
}
TY  - JOUR
AU  - Beirão da Veiga, Lourenco
AU  - Dassi, Franco
AU  - Lovadina, Carlo
AU  - Vacca, Giuseppe
TI  - SUPG-stabilized virtual elements for diffusion-convection problems: a robustness analysis
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2233
EP  - 2258
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021050/
DO  - 10.1051/m2an/2021050
LA  - en
ID  - M2AN_2021__55_5_2233_0
ER  - 
%0 Journal Article
%A Beirão da Veiga, Lourenco
%A Dassi, Franco
%A Lovadina, Carlo
%A Vacca, Giuseppe
%T SUPG-stabilized virtual elements for diffusion-convection problems: a robustness analysis
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2233-2258
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021050/
%R 10.1051/m2an/2021050
%G en
%F M2AN_2021__55_5_2233_0
Beirão da Veiga, Lourenco; Dassi, Franco; Lovadina, Carlo; Vacca, Giuseppe. SUPG-stabilized virtual elements for diffusion-convection problems: a robustness analysis. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2233-2258. doi: 10.1051/m2an/2021050

[1] R. A. Adams, Sobolev spaces, In Vol. 65 of Pure and Applied Mathematics, Academic Press, New York-London (1975). | MR | Zbl

[2] B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini and A. Russo, Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. | MR | Zbl | DOI

[3] P. F. Antonietti, S. Giani and P. Houston, h p -Version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. 35 (2013) A1417–A1439. | MR | Zbl | DOI

[4] P. F. Antonietti, A. Cangiani, J. Collis, Z. Dong, E. H. Georgoulis, S. Giani and P. Houston, Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains. Lect. Notes Comput. Sci. Eng. 50 (2016) 699–725. | MR | Zbl

[5] B. Ayuso De Dios, K. Lipnikov and G. Manzini, The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50 (2016) 879–904. | MR | Zbl | Numdam | DOI

[6] L. Beirão Da Veiga and G. Vacca, Sharper error estimates for Virtual Elements and a bubble-enriched version (2020). | MR

[7] L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of Virtual Element Methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | MR | Zbl | DOI

[8] L. Beirão Da Veiga, F. Brezzi, L. D. Marini and A. Russo, The Hitchhiker’s Guide to the Virtual Element Method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | MR | Zbl | DOI

[9] L. Beirão Da Veiga, F. Brezzi, L. D. Marini and A. Russo, Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal. 50 (2016) 727–747. | MR | Zbl | Numdam | DOI

[10] L. Beirão Da Veiga, F. Brezzi, L. D. Marini and A. Russo, Virtual Element Method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26 (2016) 729–750. | MR | Zbl | DOI

[11] L. Beirão Da Veiga, F. Dassi and A. Russo, High-order virtual element method on polyhedral meshes. Comput. Math. Appl. 74 (2017) 1110–1122. | MR | Zbl | DOI

[12] L. Beirão Da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. | MR | Zbl | DOI

[13] L. Beirão Da Veiga, A. Pichler and G. Vacca, A virtual element method for the miscible displacement of incompressible fluids in porous media. Comput. Methods Appl. Mech. Eng. 375 (2021) 113649. | MR | Zbl | DOI

[14] M. F. Benedetto, S. Berrone, A. Borio, S. Pieraccini and S. Scialò, A hybrid mortar virtual element method for discrete fracture network simulations. J. Comput. Phys. 306 (2016) 148–166. | MR | Zbl | DOI

[15] M. F. Benedetto, S. Berrone, A. Borio, S. Pieraccini and S. Scialò, Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 293 (2016) 18–40. | MR | Zbl | DOI

[16] M. F. Benedetto, S. Berrone and S. Scialò, A globally conforming method for solving flow in discrete fracture networks using the Virtual Element Method. Finite Elem. Anal. Des. 109 (2016) 23–36. | DOI

[17] S. Berrone, A. Borio and G. Manzini, SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 340 (2018) 500–529. | MR | Zbl | DOI

[18] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, 3rd edition. In Vol. 15 of Texts in Applied MathematicsSpringer, New York (2008). | MR | Zbl | DOI

[19] S. C. Brenner and L. Y. Sung, Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28 (2018) 1291–1336. | MR | Zbl | DOI

[20] F. Brezzi, R. Falk and L. D. Marini, Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48 (2014) 1227–1240. | MR | Zbl | Numdam | DOI

[21] A. Cangiani, E. H. Georgoulis and P. Houston, h p -Version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24 (2014) 2009–2041. | MR | Zbl | DOI

[22] A. Cangiani, Z. Dong, E. H. Georgoulis and P. Houston, h p -Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM Math. Model. Numer. Anal. 50 (2016) 699–725. | MR | Zbl | Numdam | DOI

[23] A. Cangiani, E. H. Georgoulis, T. Pryer and O. J. Sutton, A posteriori error estimates for the virtual element method. Numer. Math. 137 (2017) 857–893. | MR | Zbl | DOI

[24] A. Cangiani, G. Manzini and O. Sutton, Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. | MR | Zbl

[25] L. Chen and J. Huang, Some error analysis on virtual element methods. Calcolo 55 (2018). | MR | Zbl | DOI

[26] J. Coulet, I. Faille, V. Girault, N. Guy and N. Nataf, A fully coupled scheme using virtual element method and finite volume for poroelasticity. Comput. Geosci. 24 (2020) 381–403. | MR | Zbl | DOI

[27] D. A. Di Pietro and A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Math. Acad. Sci. Paris 353 (2015) 31–34. | MR | Zbl | DOI

[28] D. A. Di Pietro, J. Droniou and A. Ern, A discontinuous-skeletal method for advection-diffusion-reaction on general meshes. SIAM J. Numer. Anal. 53 (2015) 2135–2157. | MR | Zbl | DOI

[29] L. P. Franca, S. L. Frey and T. J. R. Hughes, Stabilized finite element methods. I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Eng. 95 (1992) 253–276. | MR | Zbl | DOI

[30] A. Fumagalli and E. Keilegavlen, Dual virtual element method for discrete fractures networks. SIAM J. Sci. Comput. 40 (2018) B228–B258. | MR | Zbl | DOI

[31] A. Fumagalli and E. Keilegavlen, Dual virtual element methods for discrete fracture matrix models. Oil Gas Sci. Technol. 74 (2019) 41. | DOI

[32] T. J. R. Hughes and A. N. Brooks, A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the streamline-upwind procedure. Finite Elem. Fluids (1982) 47–65.

[33] A. Quarteroni and A. Valli, Numerical approximation of partial differential equations. Springer Science & Business Media, Vol. 23 (2008). | Zbl

Cité par Sources :