Nontensorial generalised hermite spectral methods for PDEs with fractional Laplacian and Schrödinger operators
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2141-2168

In this paper, we introduce two families of nontensorial generalised Hermite polynomials/functions (GHPs/GHFs) in arbitrary dimensions, and develop efficient and accurate spectral methods for solving PDEs with integral fractional Laplacian (IFL) and/or Schrödinger operators in ℝ$$. As a generalisation of the G. Szegö’s family in 1D (1939), the first family of multivariate GHPs (resp. GHFs) are orthogonal with respect to the weight function |𝐱| 2μ e -|𝐱| 2 (resp. |𝐱| 2μ ) in ℝ$$. We further construct the adjoint generalised Hermite functions (A-GHFs), which have an interwoven connection with the corresponding GHFs through the Fourier transform, and are orthogonal with respect to the inner product [u,v] H s ( d ) =((-Δ) s/2 u,(-Δ) s/2 v) d associated with the IFL of order s > 0. As an immediate consequence, the spectral-Galerkin method using A-GHFs as basis functions leads to a diagonal stiffness matrix for the IFL (which is known to be notoriously difficult and expensive to discretise). The new basis also finds remarkably efficient in solving PDEs with the fractional Schrödinger operator: (-Δ) s +|𝐱| 2μ with s ∈ (0,1] and μ > −1/2 in ℝ$$ We construct the second family of multivariate nontensorial Müntz-type GHFs, which are orthogonal with respect to an inner product associated with the underlying Schrödinger operator, and are tailored to the singularity of the solution at the origin. We demonstrate that the Müntz-type GHF spectral method leads to sparse matrices and spectrally accurate solution to some Schrödinger eigenvalue problems.

DOI : 10.1051/m2an/2021049
Classification : 65N35, 65N25, 35Q40, 33C45, 65M70
Keywords: Generalised Hermite polynomials/functions, integral fractional Laplacian, Schrödinger operators with fractional spower potential, Müntz-type generalised Hermite functions
@article{M2AN_2021__55_5_2141_0,
     author = {Sheng, Changtao and Ma, Suna and Li, Huiyuan and Wang, Li-Lian and Jia, Lueling},
     title = {Nontensorial generalised hermite spectral methods for {PDEs} with fractional {Laplacian} and {Schr\"odinger} operators},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2141--2168},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021049},
     mrnumber = {4323404},
     zbl = {1486.65209},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021049/}
}
TY  - JOUR
AU  - Sheng, Changtao
AU  - Ma, Suna
AU  - Li, Huiyuan
AU  - Wang, Li-Lian
AU  - Jia, Lueling
TI  - Nontensorial generalised hermite spectral methods for PDEs with fractional Laplacian and Schrödinger operators
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2141
EP  - 2168
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021049/
DO  - 10.1051/m2an/2021049
LA  - en
ID  - M2AN_2021__55_5_2141_0
ER  - 
%0 Journal Article
%A Sheng, Changtao
%A Ma, Suna
%A Li, Huiyuan
%A Wang, Li-Lian
%A Jia, Lueling
%T Nontensorial generalised hermite spectral methods for PDEs with fractional Laplacian and Schrödinger operators
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2141-2168
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021049/
%R 10.1051/m2an/2021049
%G en
%F M2AN_2021__55_5_2141_0
Sheng, Changtao; Ma, Suna; Li, Huiyuan; Wang, Li-Lian; Jia, Lueling. Nontensorial generalised hermite spectral methods for PDEs with fractional Laplacian and Schrödinger operators. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2141-2168. doi: 10.1051/m2an/2021049

[1] M. S. Agranovich , Sobolev Spaces, their Generalizations and Elliptic Problems in Smooth and Lipschitz domains. Springer Monographs in Mathematics. Springer, Cham (2015). | MR | Zbl | DOI

[2] G. E. Andrews , R. Askey and R. Roy , Special Functions. Cambridge (1999). | MR | Zbl | DOI

[3] R. Askey , Orthogonal Polynomials and Special Functions. Society for Industrial and Applied Mathematics (1975). | MR | Zbl | DOI

[4] W. Bao , H. Li and J. Shen , A generalized Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating Bose-Einstein condensates. SIAM J. Sci. Comput. 31 (2009) 3685–3711. | MR | Zbl | DOI

[5] W. Bao , X. Ruan , J. Shen and C. Sheng , Fundamental gaps of the fractional Schrödinger operator. Commun. Math. Sci. 17 (2019) 447–471. | MR | Zbl | DOI

[6] W. Bao , L. Chen , X. Jiang and Y. Ma , A Jacobi spectral method for computing eigenvalue gaps and their distribution statistics of the fractional Schrödinger operator. J. Comput. Phys. 421 (2020) 109733. | MR | Zbl | DOI

[7] P. Borwein , T. Erdélyi and J. Zhang , Müntz systems and orthogonal Müntz-Legendre polynomials. Trans. Amer. Math. Soc. 342 (1994) 523–542. | MR | Zbl

[8] D. Burnett , The distribution of molecular velocities and the mean motion in a non-uniform gas. Proc. London Math. Soc. 40 (1936) 382–435. | MR | JFM | Zbl | DOI

[9] Z. Cai , Y. Fan and Y. Wang , Burnett spectral method for the spatially homogeneous Boltzmann equation. Comput. & Fluids 200 (2020) 104456. | MR | Zbl | DOI

[10] T. Chihara , Generalized Hermite polynomials. Ph.D. thesis, Purdue University (1955). | MR

[11] T. Chihara , An Introduction to Orthogonal Polynomials, New York (1978). | MR | Zbl

[12] F. Dai and Y. Xu , Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer-Verlag (2013). | MR | Zbl

[13] E. Di Nezza , G. Palatucci and E. Valdinoci , Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | MR | Zbl | DOI

[14] C. F. Dunkl and Y. Xu , Orthogonal Polynomials of Several Variables, 2nd edition, vol. 155, Cambridge University Press, Cambridge (2014). | MR | Zbl | DOI

[15] Z. J. Duoandikoetxea , Fourier Analysis, vol 29, American Mathematical Society (2001). | MR | Zbl

[16] T. Gerald , Mathematical Methods in Quantum Mechanics with Applications to Schrödinger Operators, 2nd edition. Mathematical Methods in Quantum Mechanics with Applications to Schrödinger Operators. Vol 157. American Mathematical Society, Providence, RI (2014). | Zbl

[17] I. S. Gradshteyn and I. M. Ryzhik , Table of Integrals, Series, and Products, 8th edition. Elsevier/Academic Press, Amsterdam (2015). | MR | Zbl

[18] G. A. Hagedorn , Semiclassical quantum mechanics. I. The 0 limit for coherent states. Comm. Math. Phys. 71 (1980) 77–93. | MR | DOI

[19] D. Hou and C. Xu , A fractional spectral method with applications to some singular problems. Adv. Comput. Math. 43 (2017) 911–944. | MR | Zbl | DOI

[20] Z. Hu and Z. Cai , Burnett spectral method for high-speed rarefied gas flows. SIAM J. Sci. Comput. 42 (2020) 1193–1226. | MR | Zbl | DOI

[21] L. Klebanov , Approximation of PDEs with Underlying Continuity Equations . Ph.D. thesis. Technische Universität, München (2015).

[22] N. Laskin , Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268 (2000) 298–305. | MR | Zbl | DOI

[23] C. Lasser and S. Troppmann , Hagedorn wavepackets in time-frequency and phase space. J. Fourier Anal. Appl. 20 (2014) 679–714. | MR | Zbl | DOI

[24] C. Lasser and C. Lubich , Computing quantum dynamics in the semiclassical regime. Acta Numer. 29 (2020) 229–401. | MR | Zbl | DOI

[25] N. N. Lebedev , Special Functions and their Applications, edited by Richard A Silverman . Prentice-Hall Inc, Englewood Cliffs, N.J. (1965). | MR | Zbl

[26] F. Liu , Z. Wang and H. Li , A fully diagonalized spectral method using generalized Laguerre functions on the half line. Adv. Comput. Math. 43 (2017) 1227–1259. | MR | Zbl | DOI

[27] C. Lubich , From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. European Mathematical Society, Zürich (2008). | MR | Zbl

[28] S. Ma , H. Li and Z. Zhang , Novel spectral methods for Schrödinger equations with an inverse square potential on the whole space. Discrete Contin. Dyn. Syst. Ser. B 24 (2019) 1589–1615. | MR | Zbl

[29] Z. Mao and J. Shen , Hermite spectral methods for fractional PDEs in unbounded domains. SIAM J. Sci. Comput. 39 (2017) A1928–A1950. | MR | Zbl | DOI

[30] M. Masjed-Jamei and W. Koepf , Two classes of special functions using Fourier transforms of generalized ultraspherical and generalized Hermite polynomials.a Proc. Amer. Math. Soc. 140 (2012) 2053–2063. | MR | Zbl | DOI

[31] C. H. Müntz . Über den Approximationssatz von Weierstrass, in H.A. Schwarz’s Festschrift, Berlin (1914) 303–312. | JFM

[32] V. I. Osherov and V. G. Ushakov , Analytical solutions of the Schrödinger equation for a hydrogen atom in a uniform electric field. Phys. Rev. A. 95 (2017) 023419. | DOI

[33] L. Pauling and E. B. Wilson , Introduction to Quantum Mechanics with Applications to Chemistry. McGraw-Hill (1935). | MR

[34] L. P. Pitaevskii and S. Stringari , Bose-Einstein Condensation. Oxford University Press, Oxford (2003). | MR | Zbl

[35] M. Rosenblum , Generalized Hermite polynomials and the Bose-like oscillator calculus. Nonselfadjoint operators and related topics.s Oper. Theory Adv. Appl. 73 (1994) 369–396. | MR | Zbl

[36] M. Rösler , Generalized Hermite polynomials and the heat equation for Dunkl operators. Comm. Math. Phys. 192 (1998) 519–542. | MR | Zbl | DOI

[37] T. S. Shao , T. C. Chen and R. M. Frank , Tables of zeros and Gaussian weights of certain associated Laguerre polynomials and the related generalized Hermite polynomials. Math. Comp. 18 (1964) 598–616. | MR | Zbl | DOI

[38] J. Shen , T. Tang and L.-L. Wang , Spectral Methods: Algorithms, Analysis and Applications. Springer (2011). | MR | Zbl | DOI

[39] J. Shen and Y. Wang , Müntz-Galerkin methods and applications to mixed Dirichlet-Neumann boundary value problems. SIAM J. Sci. Comput. 38 (2016) A2357–A2381. | MR | Zbl | DOI

[40] C. Sheng , J. Shen , T. Tang , L.-L. Wang and H. Yuan , Fast Fourier-like mapped Chebyshev spectral-Galerkin methods for PDEs with integral fractional Laplacian in unbounded domains. SIAM J. Numer. Anal. 58 (2020) 2435–2464. | MR | Zbl | DOI

[41] E. Schrödinger , Quantisierung als Eigenwertproblem. Annalen der Physik 384 (1926) 361–377. | JFM | DOI

[42] G. Strang and G. Fix , An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation . Prentice-Hall Inc., Englewood Cliffs, N.J (1973). | MR | Zbl

[43] G. Szegö , Orthogonal Polynomials. American Mathematical Society, Providence (1939). | MR

[44] T. Tang , The Hermite spectral method for Gaussian-type functions. SIAM J. Sci. Comput. 14 (1993) 594–606. | MR | Zbl | DOI

[45] T. Tang , H. Yuan and T. Zhou , Hermite spectral collocation methods for fractional PDEs in unbounded domains. Commun. Comput. Phys. 24 (2018) 1143–1168. | MR | Zbl | DOI

[46] A. Yurova , Generalized Anisotropic Hermite Functions and their Applications . Ph.D. thesis. Technische Universität, München (2020).

[47] Y. Zhang , X. Liu , M. Belić , et al., Propagation dynamics of a light beam in a fractional Schrödinger equation. Phys. Rev. Lett. 115 (2015) 180403. | DOI

Cité par Sources :