An adaptive edge element method and its convergence for an electromagnetic constrained optimal control problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2013-2044

In this work, an adaptive edge element method is developed for an $$(curl)-elliptic constrained optimal control problem. We use the lowest-order Nédélec’s edge elements of first family and the piecewise (element-wise) constant functions to approximate the state and the control, respectively, and propose a new adaptive algorithm with error estimators involving both residual-type error estimators and lower-order data oscillations. By using a local regular decomposition for $$(curl)-functions and the standard bubble function techniques, we derive the a posteriori error estimates for the proposed error estimators. Then we exploit the convergence properties of the orthogonal L2-projections and the mesh-size functions to demonstrate that the sequences of the discrete states and controls generated by the adaptive algorithm converge strongly to the exact solutions of the state and control in the energy-norm and L2-norm, respectively, by first achieving the strong convergence towards the solution to a limiting control problem. Three-dimensional numerical experiments are also presented to confirm our theoretical results and the quasi-optimality of the adaptive edge element method.

DOI : 10.1051/m2an/2021046
Classification : 65K10, 65N12, 65N15, 65N30, 49J20
Keywords: Constrained optimal control, Maxwell’s equations, $$ error estimates, adaptive edge element method, convergence analysis of adaptive algorithm
@article{M2AN_2021__55_5_2013_0,
     author = {Li, Bowen and Zou, Jun},
     title = {An adaptive edge element method and its convergence for an electromagnetic constrained optimal control problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2013--2044},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021046},
     mrnumber = {4318743},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021046/}
}
TY  - JOUR
AU  - Li, Bowen
AU  - Zou, Jun
TI  - An adaptive edge element method and its convergence for an electromagnetic constrained optimal control problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2013
EP  - 2044
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021046/
DO  - 10.1051/m2an/2021046
LA  - en
ID  - M2AN_2021__55_5_2013_0
ER  - 
%0 Journal Article
%A Li, Bowen
%A Zou, Jun
%T An adaptive edge element method and its convergence for an electromagnetic constrained optimal control problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2013-2044
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021046/
%R 10.1051/m2an/2021046
%G en
%F M2AN_2021__55_5_2013_0
Li, Bowen; Zou, Jun. An adaptive edge element method and its convergence for an electromagnetic constrained optimal control problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2013-2044. doi: 10.1051/m2an/2021046

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces. Academic Press 140 (2003). | MR | Zbl

[2] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons 37 (2011). | MR | Zbl

[3] G. S. Alberti and Y. Capdeboscq, Elliptic regularity theory applied to time harmonic anisotropic Maxwell’s equations with less than Lipschitz complex coefficients. SIAM J. Math. Anal. 46 (2014) 998–1016. | MR | Zbl | DOI

[4] G. S. Alberti and Y. Capdeboscq, Lectures on Elliptic Methods for Hybrid Inverse Problems. Société Mathématique de France Paris 25 (2018). | MR

[5] A. Allendes, E. Otárola, R. Rankin and A. J. Salgado, Adaptive finite element methods for an optimal control problem involving Dirac measures. Numer. Math. 137 (2017) 159–197. | MR | DOI

[6] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. | MR | Zbl | DOI

[7] I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. | MR | Zbl | DOI

[8] I. Babuška and M. Suri, The p and h - p versions of the finite element method, basic principles and properties. SIAM Rev. 36 (1994) 578–632. | MR | Zbl | DOI

[9] I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44 (1984) 75–102. | MR | Zbl | DOI

[10] R. Beck, R. Hiptmair, R. H. W. Hoppe and B. Wohlmuth, Residual based a posteriori error estimators for eddy current computation. ESAIM: M2AN 34 (2000) 159–182. | MR | Zbl | Numdam | DOI

[11] R. Becker and S. Mao, Quasi-optimality of an adaptive finite element method for an optimal control problem. Comput. Methods Appl. Math. Comput. Methods Appl. Math. 11 (2011) 107–128. | MR | Zbl | DOI

[12] V. Bommer and I. Yousept, Optimal control of the full time-dependent maxwell equations. ESAIM: M2AN 50 (2016) 237–261. | MR | Numdam | DOI

[13] A. Bossavit, Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements. Academic Press (1998). | MR | Zbl

[14] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods. Springer Science & Business Media 15 (2007). | MR | Zbl

[15] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media (2010). | MR | Zbl

[16] A. Bünger, V. Simoncini and M. Stoll, A low-rank matrix equation method for solving PDE-constrained optimization problems. Preprint (2020). | arXiv | MR

[17] J. M. Cascon, C. Kreuzer, R. H. Nochetto and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524–2550. | MR | Zbl | DOI

[18] L. Chen, iFEM: An Innovative Finite Element Methods Package in MATLAB. University of Maryland (2008).

[19] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151 (2000) 221–276. | MR | Zbl | DOI

[20] M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems. ESAIM: M2AN 33 (1999) 627–649. | MR | Zbl | Numdam | DOI

[21] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. | MR | Zbl | DOI

[22] H. Duan, F. Qiu, R. C. Tan and W. Zheng, An adaptive FEM for a Maxwell interface problem. J. Sci. Comput. 67 (2016) 669–704. | MR | DOI

[23] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28 (1991) 43–77. | MR | Zbl | DOI

[24] L. C. Evans, Partial differential equations. In: Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1998). | MR | Zbl

[25] Z. Fang, J. Li and X. Wang, Optimal control for electromagnetic cloaking metamaterial parameters design. Comput. Math. App. 79 (2020) 1165–1176. | MR

[26] A. Gaevskaya, Y. Iliash, M. Kieweg and R. H. W. Hoppe, Convergence analysis of an adaptive finite element method for distributed control problems with control constraints. In: Control of Coupled Partial Differential Equations. Springer (2007) 47–68. | MR | Zbl

[27] W. Gong and N. Yan, Adaptive finite element method for elliptic optimal control problems: convergence and optimality. Numer. Math. 135 (2017) 1121–1170. | MR | DOI

[28] W. Gong, H. Liu and N. Yan, Adaptive finite element method for parabolic equations with Dirac measure. Comput. Methods Appl. Mech. Eng. 328 (2018) 217–241. | MR | DOI

[29] M. Hintermüller, R. H. W. Hoppe, Y. Iliash and M. Kieweg, An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM: Control Optim. Calculus Variations 14 (2008) 540–560. | MR | Zbl | Numdam

[30] M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. App. 30 (2005) 45–61. | MR | Zbl | DOI

[31] R. Hiptmair, Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36 (1998) 204–225. | MR | Zbl | DOI

[32] R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in 𝐇 ( curl ) and 𝐇 ( div ) spaces. SIAM J. Numer. Anal. 45 (2007) 2483–2509. | MR | Zbl | DOI

[33] J. B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I: Fundamentals. Springer Science & Business Media 305 (2013). | MR

[34] R. H. W. Hoppe and J. Schöberl, Convergence of adaptive edge element methods for the 3D eddy currents equations. J. Comput. Math. 27 (2009) 657–676. | MR | Zbl | DOI

[35] R. H. W. Hoppe and I. Yousept, Adaptive edge element approximation of 𝐇 ( 𝐜𝐮𝐫𝐥 ) -elliptic optimal control problems with control constraints. BIT Numer. Math. 55 (2015) 255–277. | MR | DOI

[36] F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Faculty Sci. Univ. Tokyo. Sect. 1 A Math. 36 (1989) 479–490. | MR | Zbl

[37] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications. Siam 31 (1980). | MR | Zbl

[38] K. Kohls, A. Rosch and K. G. Siebert, A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52 (2014) 1832–1861. | MR | Zbl | DOI

[39] K. Kohls, K. G. Siebert and A. Rösch, Convergence of adaptive finite elements for optimal control problems with control constraints. In: Trends in PDE Constrained Optimization. Springer (2014) 403–419. | MR

[40] K. Kohls, C. Kreuzer, A. Rösch and K. G. Siebert, Convergence of adaptive finite element methods for optimal control problems with control constraints. North-West. Eur. J. Math 4 (2018) 157–184. | MR

[41] M. Kolmbauer and U. Langer, A robust preconditioned minres solver for distributed time-periodic eddy current optimal control problems. SIAM J. Sci. Comput. 34 (2012) B785–B809. | MR | Zbl | DOI

[42] H. Leng and Y. Chen, Convergence and quasi-optimality of an adaptive finite element method for optimal control problems on L 2 errors. J. Sci. Comput. 73 (2017) 438–458. | MR | DOI

[43] H. Leng and Y. Chen, Convergence and quasi-optimality of an adaptive finite element method for optimal control problems with integral control constraint. Adv. Comput. Math. 44 (2018) 367–394. | MR | DOI

[44] P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press (2003). | MR | Zbl

[45] P. Morin, K. G. Siebert and A. Veeser, A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. Sci. 18 (2008) 707–737. | MR | Zbl | DOI

[46] S. Nicaise, S. Stingelin and F. Tröltzsch, On two optimal control problems for magnetic fields. Comput. Methods Appl. Math. 14 (2014) 555–573. | MR | Zbl | DOI

[47] S. Nicaise, S. Stingelin and F. Tröltzsch, Optimal control of magnetic fields in flow measurement. Discrete Continuous Dyn. Syst.-S 8 (2015) 579. | MR | Zbl | DOI

[48] R. H. Nochetto, A. Siebert and K. G. Veeser, Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation. Springer (2009) 409–542. | MR | Zbl

[49] D. Pauly and I. Yousept, A posteriori error analysis for the optimal control of magneto-static fields. ESAIM: M2AN 51 (2017) 2159–2191. | MR | Numdam | DOI

[50] J. W. Pearson and J. Gondzio, Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization. Numer. Math. 137 (2017) 959–999. | MR | Zbl | DOI

[51] J. W. Pearson and A. J. Wathen, A new approximation of the Schur complement in preconditioners for PDE-constrained optimization. Numer. Linear Algebra App. 19 (2012) 816–829. | MR | Zbl | DOI

[52] J. W. Pearson, M. Stoll and A. J. Wathen, Regularization-robust preconditioners for time-dependent PDE-constrained optimization problems. SIAM J. Matrix Anal. App. 33 (2012) 1126–1152. | MR | Zbl | DOI

[53] J. Schöberl, A posteriori error estimates for Maxwell equations. Math. Comput. 77 (2008) 633–649. | MR | Zbl

[54] C. Schwab, p - and h p -Finite Element Methods: Theory and Applications to Solid and Fluid Mechanics. Oxford University Press, Oxford (1998). | MR | Zbl

[55] M. Stoll and T. Breiten, A low-rank in time approach to PDE-constrained optimization. SIAM J. Sci. Comput. 37 (2015) B1–B29. | MR | Zbl | DOI

[56] M. Suri, The p and h p finite element method for problems on thin domains. J. Comput. Appl. Math. 128 (2001) 235–260. | MR | Zbl | DOI

[57] B. Szabó and I. Babuška, Finite Element Analysis. John Wiley & Sons (1991). | MR | Zbl

[58] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. American Mathematical Society 112 (2010). | MR | Zbl

[59] R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 67–83. | MR | Zbl | DOI

[60] C. Weber and P. Werner, Regularity theorems for Maxwell’s equations. Math. Methods Appl. Sci. 3 (1981) 523–536. | MR | Zbl | DOI

[61] Y. Xu and J. Zou, A convergent adaptive edge element method for an optimal control problem in magnetostatics. ESAIM: M2AN 51 (2017) 615–640. | MR | Zbl | Numdam | DOI

[62] H. M. Yin, Regularity of weak solution to Maxwell’s equations and applications to microwave heating. J. Differ. Equ. 200 (2004) 137–161. | MR | Zbl | DOI

[63] I. Yousept, Optimal control of quasilinear 𝐇 ( 𝐜𝐮𝐫𝐥 ) -elliptic partial differential equations in magnetostatic field problems. SIAM J. Control Optim. 51 (2013) 3624–3651. | MR | Zbl | DOI

[64] I. Yousept, Optimal control of non-smooth hyperbolic evolution Maxwell equations in type-II superconductivity. SIAM J. Control Optim. 55 (2017) 2305–2332. | MR | Zbl | DOI

[65] I. Yousept, Hyperbolic Maxwell variational inequalities of the second kind. ESAIM: Control Optim. Calculus Variations 26 (2020) 34. | MR | Zbl | Numdam

[66] I. Yousept, Well-posedness theory for electromagnetic obstacle problems. J. Differ. Equ. 269 (2020) 8855–8881. | MR | Zbl | DOI

[67] L. Zhong, S. Shu, L. Chen and J. Xu, Convergence of adaptive edge finite element methods for 𝐇 ( 𝐜𝐮𝐫𝐥 ) -elliptic problems. Numer. Linear Algebra App. 17 (2010) 415–432. | MR | Zbl | DOI

[68] L. Zhong, L. Chen, S. Shu, G. Wittum and J. Xu, Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations. Math. Comput. 81 (2012) 623–642. | MR | Zbl

Cité par Sources :