Numerical discretization and fast approximation of a variably distributed-order fractional wave equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2211-2232

We investigate a variably distributed-order time-fractional wave partial differential equation, which could accurately model, e.g., the viscoelastic behavior in vibrations in complex surroundings with uncertainties or strong heterogeneity in the data. A standard composite rectangle formula of mesh size σ is firstly used to discretize the variably distributed-order integral and then the L-1 formula of degree of freedom N is applied for the resulting fractional derivatives. Optimal error estimates of the corresponding fully-discrete finite element method are proved based only on the smoothness assumptions of the data. To maintain the accuracy, setting σ = O(N−1) leads to O(N3) operations of evaluating the temporal discretization coefficients. To improve the computational efficiency, we develop a novel time-stepping scheme by expanding the fractional kernel at a fixed fractional order to decouple the fractional operator from the variably distributed-order integral. Only O(logN) terms are needed for the expansion without loss of accuracy, which consequently reduce the computational cost of generating coefficients from O(N3) to O(N2 logN). Optimal-order error estimates of this time-stepping scheme are rigorously proved via novel and different techniques from the standard analysis procedure of the L-1 methods. Numerical experiments are presented to substantiate the theoretical results.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021045
Classification : 35R11, 65N30
Keywords: Variably distributed-order time-fractional wave equation, viscoelastic problem, well-posedness and regularity, finite element method, optimal-order error estimate, fast algorithm
@article{M2AN_2021__55_5_2211_0,
     author = {Jia, Jinhong and Zheng, Xiangcheng and Wang, Hong},
     title = {Numerical discretization and fast approximation of a variably distributed-order fractional wave equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2211--2232},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021045},
     mrnumber = {4323406},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021045/}
}
TY  - JOUR
AU  - Jia, Jinhong
AU  - Zheng, Xiangcheng
AU  - Wang, Hong
TI  - Numerical discretization and fast approximation of a variably distributed-order fractional wave equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2211
EP  - 2232
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021045/
DO  - 10.1051/m2an/2021045
LA  - en
ID  - M2AN_2021__55_5_2211_0
ER  - 
%0 Journal Article
%A Jia, Jinhong
%A Zheng, Xiangcheng
%A Wang, Hong
%T Numerical discretization and fast approximation of a variably distributed-order fractional wave equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2211-2232
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021045/
%R 10.1051/m2an/2021045
%G en
%F M2AN_2021__55_5_2211_0
Jia, Jinhong; Zheng, Xiangcheng; Wang, Hong. Numerical discretization and fast approximation of a variably distributed-order fractional wave equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2211-2232. doi: 10.1051/m2an/2021045

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces. Elsevier, San Diego (2003). | MR | Zbl

[2] M. Ainsworth and J. Oden, A posteriori error estimation in finite element analysis. Pure and Applied Mathematics, Wiley, New York (2000). | MR | Zbl | DOI

[3] R. Bagley and P. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheology 27 (1983) 201–210. | Zbl | DOI

[4] A. Bonfanti, J. L. Kaplan, G. Charras and A. Kabla, Fractional viscoelastic models for power-law materials. Soft Matter 16 (2020) 6002–6020. | DOI

[5] D. Boyadzhiev, H. Kiskinov, M. Veselinova and A. Zahariev, Stability analysis of linear distributed order fractional systems with distributed delays. Fract. Calc. Appl. Anal. 20 (2017) 914–935. | MR | DOI

[6] M. Caputo and M. Fabrizio, The Kernel of the distributed order fractional derivatives with an application to complex materials. Fractal Fract. 1 (2017) 13. | DOI

[7] A. V. Chechkin, R. Gorenflo and I. M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66 (2002) 046129. | DOI

[8] A. Consiglio and F. Mainardi, On the evolution of fractional diffusive waves. Ricerche Mat. 70 (2021) 21–33. | MR | DOI

[9] E. Cuesta, C. Lubich and C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75 (2006) 673–696. | MR | Zbl | DOI

[10] K. Diethelm and N. J. Ford, Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 4 (2001) 531–542. | MR | Zbl

[11] R. Du, A. Alikhanov and Z. Sun, Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations. Comput. Math. Appl. 79 (2020) 2952–2972. | MR | DOI

[12] L. C. Evans, Partial Differential Equations. Graduate Studies in Mathematics 19. American Mathematical Society, Rhode Island (1998). | MR | Zbl

[13] Z. Fang, H. Sun and H. Wang, A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations. Comput. Math. Appl. 80 (2020) 1443–1458. | MR | DOI

[14] N. Ford and M. Morgado, Distributed order equations as boundary value problems. Comput. Math. Appl. 64 (2012) 2973–2981. | MR | Zbl | DOI

[15] R. Gorenflo, Y. Luchko and Mirjana Stojanović, Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16 (2013) 297–316. | MR | DOI

[16] W. Hackbusch, Integral Equations: theory and Numerical Treatment. International series of numerical mathematics. Vol. 120, Birkhäuser Verlag, Basel (1995). | MR | Zbl

[17] J. Jia and H. Wang, A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains. Comput. Math. Appl. 73 (2018) 2031–2043. | MR | DOI

[18] J. Jia, H. Wang and X. Zheng, A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions. Appl. Numer. Math. 163 (2021) 15–29. | MR | DOI

[19] B. Jin, R. Lazarov, Z. Zhou, Two schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38 (2014) A146–A170. | MR | DOI

[20] R. J. Leveque, Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002). | MR | Zbl

[21] J. Li, F. Liu, L. Feng and I. Turner, A novel finite volume method for the Riesz space distributed-order advection-diffusion equation. Appl. Math. Model. 46 (2017) 536–553. | MR | DOI

[22] B. Li, H. Luo and X. Xie, Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data. SIAM J. Numer. Anal. 57 (2019) 779–798. | MR | DOI

[23] Z. Li, K. Fujishiro and G. Li, Uniqueness in the inversion of distributed orders in ultraslow diffusion equations. J. Comput. Appl. Math. 369 (2020) 112564. | MR | DOI

[24] C. Lorenzo and T. Hartley, Variable order and distributed order fractional operators. Nonlinear Dyn. 29 (2002) 57–98. | MR | Zbl | DOI

[25] Y. Luchko and F. Francesco, Cauchy and signaling problems for the time-fractional diffusion-wave equation. J. Vib. Acoust. 136 (2014) 051008.

[26] R. L. Magin, H. Karani, S. Wang and Y. Liang, Fractional order complexity model of the diffusion signal decay in MRI. Mathematics 7 (2019) 348. | DOI

[27] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models. World Scientific (2010). | MR | Zbl | DOI

[28] S. Mashayekhi and M. Razzaghi, Numerical solution of distributed order fractional differential equations by hybrid functions. J. Comput. Phys. 315 (2016) 169–181. | MR | DOI

[29] W. Mclean and K. Mustapha, A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105 (2007) 481–510. | MR | Zbl | DOI

[30] M. M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics (2011). | MR | Zbl | DOI

[31] I. Podlubny, Fractional Differential Equations. Academic Press (1999). | MR | Zbl

[32] S. Patnaik and F. Semperlotti, Application of variable- and distributed-order fractional operators to the dynamic analysis of nonlinear oscillators. Nonlinear Dyn. 100 (2020) 561–580. | DOI

[33] K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J Math. Anal. Appl. 382 (2011) 426–447. | MR | Zbl | DOI

[34] J. Suzuki, Y. Zhou, M. D’Elia and M. Zayernouri, A thermodynamically consistent fractional visco-elasto-plastic model with memory-dependent damage for anomalous materials. Comput. Meth. Appl. Mech. Engrg. 373 (2021) 113494. | MR | DOI

[35] M. Samiee, E. Kharazmi, M. Meerschaert, M. Zayernouri, A unified Petrov-Galerkin spectral method and fast solver for distributed-order partial differential equations. Commun. Appl. Math. Comput. 1 (2020) 1–30. | MR

[36] T. Sandev, R. Metzler and A. Chechkin, From continuous time random walks to the generalized diffusion equation. Fract. Calc. Appl. Anal. 21 (2018) 10–28. | MR | DOI

[37] P. Spanos and G. Malara, Nonlinear random vibrations of beams with fractional derivative elements. J. Eng. Mech. 140 (2014) 04014069. | DOI

[38] M. Stojanović and R. Gorenflo, Nonlinear two-term time fractional diffusion-wave problem. Nonlinear Anal-Real 11 (2010) 3512–3523. | MR | Zbl | DOI

[39] M. Stynes, E. O’Riordan and J. L. Gracia, Error analysis of a finite difference method on graded mesh for a time-fractional diffusion equation. SIAM J Numer. Anal. 55 (2017) 1057–1079. | MR | DOI

[40] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics 1054. Springer-Verlag, New York (1984). | MR | Zbl

[41] H. Wang and X. Zheng, Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475 (2019) 1778–1802. | MR | DOI

[42] X. Zheng and H. Wang, An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation. SIAM J. Numer. Anal. 58 (2020) 2492–2514. | MR | DOI

[43] X. Zheng and H. Wang, The unique identification of variable-order fractional wave equations. Z. Angew. Math. Phys. 72 (2021) 100. | MR | DOI

[44] X. Zheng and H. Wang, A hidden-memory variable-order fractional optimal control model: analysis and approximation. SIAM J. Control Optim. 59 (2021) 1851–1880. | MR | DOI

[45] X. Zheng and H. Wang, Analysis and discretization of a variable-order fractional wave equation. Commun. Nonlinear Sci. 104 (2022) 106047. | MR | DOI

Cité par Sources :