Finite element approximation of steady flows of colloidal solutions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1963-2011

We consider the mathematical analysis and numerical approximation of a system of nonlinear partial differential equations that arises in models that have relevance to steady isochoric flows of colloidal suspensions. The symmetric velocity gradient is assumed to be a monotone nonlinear function of the deviatoric part of the Cauchy stress tensor. We prove the existence of a weak solution to the problem, and under the additional assumption that the nonlinearity involved in the constitutive relation is Lipschitz continuous we also prove uniqueness of the weak solution. We then construct mixed finite element approximations of the system using both conforming and nonconforming finite element spaces. For both of these we prove the convergence of the method to the unique weak solution of the problem, and in the case of the conforming method we provide a bound on the error between the analytical solution and its finite element approximation in terms of the best approximation error from the finite element spaces. We propose first a Lions–Mercier type iterative method and next a classical fixed-point algorithm to solve the finite-dimensional problems resulting from the finite element discretisation of the system of nonlinear partial differential equations under consideration and present numerical experiments that illustrate the practical performance of the proposed numerical method.

DOI : 10.1051/m2an/2021043
Classification : 35Q35, 65N12, 76D03, 76M10, 76A05
Keywords: Non-Newtonian fluids, implicit constitutive theory, existence of weak solutions, mixed finite element approximation, convergence analysis
@article{M2AN_2021__55_5_1963_0,
     author = {Bonito, Andrea and Girault, Vivette and Guignard, Diane and Rajagopal, Kumbakonam R. and S\"uli, Endre},
     title = {Finite element approximation of steady flows of colloidal solutions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1963--2011},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021043},
     mrnumber = {4318744},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021043/}
}
TY  - JOUR
AU  - Bonito, Andrea
AU  - Girault, Vivette
AU  - Guignard, Diane
AU  - Rajagopal, Kumbakonam R.
AU  - Süli, Endre
TI  - Finite element approximation of steady flows of colloidal solutions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1963
EP  - 2011
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021043/
DO  - 10.1051/m2an/2021043
LA  - en
ID  - M2AN_2021__55_5_1963_0
ER  - 
%0 Journal Article
%A Bonito, Andrea
%A Girault, Vivette
%A Guignard, Diane
%A Rajagopal, Kumbakonam R.
%A Süli, Endre
%T Finite element approximation of steady flows of colloidal solutions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1963-2011
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021043/
%R 10.1051/m2an/2021043
%G en
%F M2AN_2021__55_5_1963_0
Bonito, Andrea; Girault, Vivette; Guignard, Diane; Rajagopal, Kumbakonam R.; Süli, Endre. Finite element approximation of steady flows of colloidal solutions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1963-2011. doi: 10.1051/m2an/2021043

[1] W. Bangerth, R. Hartmann and G. Kanschat, deal.II – a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33 (2007) 24-es. | MR | DOI

[2] S. Bartels, M. Jensen and R. Müller, Discontinuous Galerkin finite element convergence for incompressible miscible displacement problems of low regularity. SIAM J. Numer. Anal. 47 (2009) 3720–3743. | MR | Zbl | DOI

[3] D. Boffi, Three dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal. 34 (1997) 664–670. | MR | Zbl | DOI

[4] P. Boltenhagen, Y. Hu, E. Matthys and D. Pine, Observation of bulk phase separation and coexistence in a sheared micellar solution. Phys. Rev. Lett. 79 (1997) 2359–2362. | DOI

[5] A. Bonito, V. Girault and E. Süli, Finite element approximation of a strain-limiting elastic model. IMA J. Numer. Anal. 40 (2020) 29–86. | MR | DOI

[6] S. Brenner, Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324. | MR | Zbl | DOI

[7] S. Brenner, Korn’s inequalities for piecewise H 1 vector fields. Math. Comp. 73 (2004) 1067–1087. | MR | Zbl

[8] S. Brenner and L. Scott, The mathematical theory of finite element methods, 3rd edition. In: Vol. 15 of Texts in Applied Mathematics. Springer, New York (2008). | MR | Zbl

[9] P. Bridgman, The Physics of High Pressure. MacMillan (1931).

[10] A. Buffa and C. Ortner, Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal. 29 (2009) 827–855. | MR | Zbl | DOI

[11] M. Bulček, P. Gwiazda, J. Málek, K. Rajagopal and A. Świerczewska-Gwiazda, On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph, edited by J. Robinson, J. Rodrigo and W. Sadowski. In: Mathematical Aspects of Fluid Mechanics. London Mathematical Society Lecture Note Series. Cambridge University Press (2012) 23–51. | MR | Zbl

[12] M. Bulček, J. Málek, K. Rajagopal and E. Süli, On elastic solids with limiting small strain: modelling and analysis. EMS Surv. Math. Sci. 1 (2014) 283–332. | MR | Zbl | DOI

[13] J. Burgers, Mechanical considerations-Model systems-Phenomenological theories of relaxation and of viscosity. First report on viscosity and plasticity. Prepared by the Committee for the Study of Viscosity, 2nd edition. Tech. Report, Academy of Sciences at Amsterdam (1939).

[14] P. Ciarlet, Basic error estimates for elliptic problems. In: Vol. II of Handbook of Numerical Analysis. North-Holland, Amsterdam (1991) 17–351. | MR | Zbl

[15] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO 7 (1973) 33–75. | MR | Zbl | Numdam

[16] D. Dipietro and A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comput. 79 (2010) 1303–1330. | MR | Zbl | DOI

[17] L. Evans, Partial differential equations. In: Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society (2010). | MR | Zbl

[18] R. Falk, Nonconforming finite element methods for the equations of linear elasticity. Math. Comput. 57 (1991) 529–550. | MR | Zbl | DOI

[19] V. Girault and P.-A. Raviart, Finite element methods for Navier–Stokes equations: theory and algorithms, In: Vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). | MR | Zbl

[20] V. Girault, J. Li and B. Rivière, Strong convergence of discrete DG solutions to the heat equation. J. Numer. Math. 24 (2016) 235–252. | MR

[21] T. Hu, P. Boltenhagen, E. Matthys and D. Pine, Shear thickening in low-concentration solutions of wormlike micelles. II. Slip, fracture, and stability of the shear-induced phase. J. Rheol. 42 (1998) 1209–1226. | DOI

[22] A. Johnen, J.-C. Weill and J.-F. Remacle, Robust and efficient validation of the linear hexahedral element. Proc. Eng. 203 (2017) 271–283. | DOI

[23] P. Knabner, S. Korotov and G. Summ, Conditions for the invertibility of the isoparametric mapping for hexahedral finite elements. Finite. Elem. Anal. Des. 40 (2003) 159–172. | MR | DOI

[24] A. Lasis and E. Süli, Poincaré-type inequalities for broken Sobolev spaces. Internal Report 03/10. Oxford University Computing Laboratory, Numerical Analysis Group, Oxford, England, OX1 3QD (2003).

[25] P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16 (1979) 964–979. | MR | Zbl | DOI

[26] D. Lopez-Diaz, E. Sarmiento-Gomez, C. Garza and R. Castillo, A rheological study in the dilute regime of the worm-micelle fluid made of zwitterionic surfactant (TDPS), anionic surfactant (SDS), and brine. J. Colloid Interface Sci. 348 (2010) 152–158. | DOI

[27] J. Málek and K. Rajagopal, Mathematical properties of the equations governing the flow of fluids with pressure and shear rate dependent viscosities, edited by S. Friedlander and D. Serre. In: Vol. 4 of Handbook of Mathematical Fluid Dynamics. Elsevier (2006). | MR

[28] J. Maxwell, On the dynamical theory of gases. Philos. Trans. R. Soc. A 157 (1866) 26–78.

[29] G. Minty, On a “monotonicity’’ method for the solution of nonlinear equations in Banach spaces. Proc. Natl. Acad. Sci. U.S.A. 50 (1963) 1038–1041. | MR | Zbl | DOI

[30] J. Oldroyd, On the formulation of rheological equations of state. Proc. R. Soc. London Ser. A 200 (1950) 523–591. | MR | Zbl | DOI

[31] D. Peaceman and H. Rachford, The numerical solution of parabolic elliptic differential equations. J. Soc. Indust. Appl. Math. 3 (1955) 28–41. | MR | Zbl | DOI

[32] T. Perlácová and V. Prǔša, Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 216 (2015) 13–21. | MR | DOI

[33] V. Prǔša, J. Málek and K. Rajagopal, Generalizations of the Navier-Stokes fluid from a new perspective. Int. J. Eng. Sci. 48 (2010) 1907–1924. | MR | Zbl | DOI

[34] K. Rajagopal, On implicit constitutive theories. Appl. Math. 48 (2003) 279–319. | MR | Zbl | DOI

[35] K. Rajagopal, On implicit constitutive theories for fluids. J. Fluid Mech. 550 (2006) 243–249. | MR | Zbl | DOI

[36] K. Rajagopal, A new development and interpretation of the Navier-Stokes fluid which reveals why the Stokes Assumption is inapt. Int. J. Non-Linear Mech. 50 (2013) 141–151. | DOI

[37] K. Rajagopal, Remarks on the notion of “pressure’’. Int. J. Non-Linear Mech. 71 (2015) 165–172. | DOI

[38] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM (2008). | MR | Zbl

[39] C. Le Roux and K. Rajagopal, Shear flows of a new class of power law fluids. Appl. Math. 58 (2013) 153–177. | MR | Zbl | DOI

[40] G. Stokes, On the theories of internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Cambridge Phil. Soc. 8 (1845) 287–341.

[41] R. Temam, Theory and Numerical Analysis of the Navier-Stokes Equations. North-Holland, Amsterdam, The Netherlands (1977). | MR | Zbl

[42] S. Zhang, Subtetrahedral test for the positive Jacobian of hexahedral elements. Preprint (2005).

Cité par Sources :