Computation of optimal transport with finite volumes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1847-1871

We construct Two-Point Flux Approximation (TPFA) finite volume schemes to solve the quadratic optimal transport problem in its dynamic form, namely the problem originally introduced by Benamou and Brenier. We show numerically that these type of discretizations are prone to form instabilities in their more natural implementation, and we propose a variation based on nested meshes in order to overcome these issues. Despite the lack of strict convexity of the problem, we also derive quantitative estimates on the convergence of the method, at least for the discrete potential and the discrete cost. Finally, we introduce a strategy based on the barrier method to solve the discrete optimization problem.

DOI : 10.1051/m2an/2021041
Classification : 65N08, 35A15, 65K10, 49M29, 90C51
Keywords: Dynamical optimal transport, finite volumes, barrier method
@article{M2AN_2021__55_5_1847_0,
     author = {Natale, Andrea and Todeschi, Gabriele},
     title = {Computation of optimal transport with finite volumes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1847--1871},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021041},
     mrnumber = {4313377},
     zbl = {1477.65177},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021041/}
}
TY  - JOUR
AU  - Natale, Andrea
AU  - Todeschi, Gabriele
TI  - Computation of optimal transport with finite volumes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1847
EP  - 1871
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021041/
DO  - 10.1051/m2an/2021041
LA  - en
ID  - M2AN_2021__55_5_1847_0
ER  - 
%0 Journal Article
%A Natale, Andrea
%A Todeschi, Gabriele
%T Computation of optimal transport with finite volumes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1847-1871
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021041/
%R 10.1051/m2an/2021041
%G en
%F M2AN_2021__55_5_1847_0
Natale, Andrea; Todeschi, Gabriele. Computation of optimal transport with finite volumes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1847-1871. doi: 10.1051/m2an/2021041

[1] Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50 (2012) 77–109. | MR | Zbl | DOI

[2] M. Bardi and L. C. Evans, On hopf’s formulas for solutions of Hamilton-Jacobi equations. Nonlinear Anal.: Theory Methods App. 8 (1984) 1373–1381. | MR | Zbl | DOI

[3] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. | MR | Zbl | DOI

[4] J.-D. Benamou and G. Carlier, Augmented lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Optim. Theory App. 167 (2015) 1–26. | MR | Zbl | DOI

[5] J.-D. Benamou, G. Carlier and M. Laborde, An augmented lagrangian approach to wasserstein gradient flows and applications. ESAIM: Proce. Surv. 54 (2016) 1–17. | MR | Zbl | DOI

[6] M. Benzi, G. Golub and J. Liesen, Numerical solution of saddle point problems. Acta Numer. 14 (2005) 1–137. | MR | Zbl | DOI

[7] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press (2004). | MR | Zbl | DOI

[8] C. Cancés, T. Gallouët and G. Todeschi, A variational finite volume scheme for wasserstein gradient flows. Numer. Math. 146 (2020) 437–480. | MR | Zbl | DOI

[9] J. A. Carrillo, K. Craig, L. Wang and C. Wei, Primal dual methods for wasserstein gradient flows. Found. Comput. Math. (2021). DOI: . | DOI | MR | Zbl

[10] C. Chainais-Hillairet, J.-G. Liu and Y.-J. Peng, Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. Math. Modell. Numer. Anal. 37 (2003) 319–338. | MR | Zbl | Numdam | DOI

[11] M. Erbar, M. Rumpf, B. Schmitzer and S. Simon, Computation of optimal transport on discrete metric measure spaces. Numer. Math. 144 (2020) 157–200. | MR | Zbl | DOI

[12] R. Eymard and Gallouët Thierry, H -convergence and numerical schemes for elliptic problems. SIAM J. Numer. Anal. 41 (2003) 539–562. | MR | Zbl | DOI

[13] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In: Vol. 7 of Handbook of Numerical Analysis (2000) 713–1020. | MR | Zbl

[14] R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes sushi: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2009) 1009–1043. | MR | Zbl | DOI

[15] E. Facca, F. Cardin and M. Putti, Towards a stationary Monge-Kantorovich dynamics: the physarum polycephalum experience. SIAM J. Appl. Math. 78 (2018) 651–676. | MR | Zbl | DOI

[16] E. Facca, S. Daneri, F. Cardin and M. Putti, Numerical solution of Monge-Kantorovich equations via a dynamic formulation. J. Sci. Comput. 82 (2020) 1–26. | MR | Zbl | DOI

[17] A. Forsgren, P. E. Gill and M. H. Wright, Interior methods for nonlinear optimization. SIAM Rev. 44 (2002) 525–597. | MR | Zbl | DOI

[18] FVCAV, Benchmark. https://www.i2m.univ-amu.fr/fvca5/benchmark/Meshes/index.html.

[19] P. Gladbach, E. Kopfer and J. Maas, Scaling limits of discrete optimal transport. Preprint (2018). | arXiv | MR | Zbl

[20] J. Gondzio, Interior point methods 25 years later. Eur. J. Oper. Res. 218 (2012) 587–601. | MR | Zbl | DOI

[21] H. Lavenant, Unconditional convergence for discretizations of dynamical optimal transport. Preprint (2019). | arXiv | MR | Zbl

[22] H. Lavenant, S. Claici, E. Chien and J. Solomon, Dynamical optimal transport on discrete surfaces. ACM Trans. Graphics (TOG) 37 (2018) 1–16. | DOI

[23] W. Li, P. Yin and S. Osher, Computations of optimal transport distance with fisher information regularization. J. Sci. Comput. 75 (2018) 1581–1595. | MR | Zbl | DOI

[24] A. Natale and G. Todeschi, A mixed finite element discretization of dynamical optimal transport. Working paper or Preprint (2020). | arXiv

[25] A. Natale and G. Todeschi, TPFA finite volume approximation of Wasserstein gradient flows. In: Finite Volumes for Complex Applications IX – Methods, Theoretical Aspects, Examples. Springer International Publishing (2020) 193–201. | MR | Zbl | DOI

[26] N. Papadakis, G. Peyré and E. Oudet, Optimal transport with proximal splitting. SIAM J. Imaging Sci. 7 (2014) 212–238. | MR | Zbl | DOI

[27] I. Pòlik and T. Terlaky, Interior point methods for nonlinear optimization, edited by G. Di Pillo and F. Schoen. In: Nonlinear Optimization. Vol. 1989 of Lecture Notes in Mathematics. Springer Berlin Heidelberg (2010). | MR | Zbl | DOI

[28] F. Santambrogio, Optimal Transport for Applied Mathematicians. Birkäuser, NY (2015) 99–102. | MR

[29] F. Santambrogio and X.-J. Wang, Convexity of the support of the displacement interpolation: counter examples. Appl. Math. Lett. 58 (2016) 152–158. | MR | Zbl | DOI

Cité par Sources :