A type of full multigrid method for non-selfadjoint Steklov eigenvalue problems in inverse scattering
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1779-1802

In this paper, a type of full multigrid method is proposed to solve non-selfadjoint Steklov eigenvalue problems. Multigrid iterations for corresponding selfadjoint and positive definite boundary value problems generate proper iterate solutions that are subsequently added to the coarsest finite element space in order to improve approximate eigenpairs on the current mesh. Based on this full multigrid, we propose a new type of adaptive finite element method for non-selfadjoint Steklov eigenvalue problems. We prove that the computational work of these new schemes are almost optimal, the same as solving the corresponding positive definite selfadjoint boundary value problems. In this case, these type of iteration schemes certainly improve the overfull efficiency of solving the non-selfadjoint Steklov eigenvalue problem. Some numerical examples are provided to validate the theoretical results and the efficiency of this proposed scheme.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021039
Classification : 35Q99, 65N30, 65M12, 65M70
Keywords: Non-selfadjoint steklov eigenvalue problem, full multigrid method, multilevel correction method, adaptive finite element method
@article{M2AN_2021__55_5_1779_0,
     author = {Xie, Manting and Xu, Fei and Yue, Meiling},
     title = {A type of full multigrid method for non-selfadjoint {Steklov} eigenvalue problems in inverse scattering},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1779--1802},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021039},
     mrnumber = {4313373},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021039/}
}
TY  - JOUR
AU  - Xie, Manting
AU  - Xu, Fei
AU  - Yue, Meiling
TI  - A type of full multigrid method for non-selfadjoint Steklov eigenvalue problems in inverse scattering
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1779
EP  - 1802
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021039/
DO  - 10.1051/m2an/2021039
LA  - en
ID  - M2AN_2021__55_5_1779_0
ER  - 
%0 Journal Article
%A Xie, Manting
%A Xu, Fei
%A Yue, Meiling
%T A type of full multigrid method for non-selfadjoint Steklov eigenvalue problems in inverse scattering
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1779-1802
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021039/
%R 10.1051/m2an/2021039
%G en
%F M2AN_2021__55_5_1779_0
Xie, Manting; Xu, Fei; Yue, Meiling. A type of full multigrid method for non-selfadjoint Steklov eigenvalue problems in inverse scattering. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1779-1802. doi: 10.1051/m2an/2021039

[1] M. Armentano and C. Padra, A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math. 58 (2008) 593–601. | MR | Zbl | DOI

[2] I. Babuška and J. Osborn, Eigenvalue Problems, edited by J. Lions and P. Ciarlet, Vol. II. In: Handbook of numerical analysis, Finite element methods (Part 1), North-Holland, Amsterdam (1991) 641–787. | MR | Zbl | DOI

[3] R. E. Bank and T. Dupont, An optimal order process for solving finite element equations. Math. Comput. 36 (1981) 35–51. | MR | Zbl | DOI

[4] H. Bi and Y. Yang, A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem. Appl. Math. Comput. 217 (2011) 9669–9678. | MR | Zbl

[5] H. Bi, Y. Zhang and Y. Yang, Two-grid discretizations and a local finite element scheme for a non-selfadjoint Stekloff eigenvalue problem. Comput. Math. Appl. 79 (2020) 1895–1913. | MR | DOI

[6] J. Bramble and J. Osborn, Approximation of Steklov Eigenvalues of Non-selfadjoint Second Order Elliptic Operators, edited by A. Aziz, In: Mathematical foundations of the finite element method with applications to PDEs. Academic Press, New York (1972) 387–408. | MR | Zbl

[7] J. Bramble and J. Pasciak, New convergence estimates for multigrid algorithms. Math. Comput. 49 (1987) 311–329. | MR | Zbl | DOI

[8] S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). | MR | Zbl | DOI

[9] F. Cakoni, D. Colton, S. Meng and P. Monk, Steklov eigenvalues in inverse scattering. SIAM J. Appl. Math. 76 (2016) 1737–1763. | MR | DOI

[10] J. A. Canavati and A. A. Minzoni, A discontinuous Steklov problem with an application to water waves. J. Math. Anal. Appl. 69 (1979) 540–558. | MR | Zbl | DOI

[11] L. Cao, L. Zhang, W. Allegretto and Y. Lin, Multiscale asymptotic method for Steklov eigenvalue equations in composite media. SIAM J. Numer. Anal. 51 (2013) 273–296. | MR | Zbl | DOI

[12] C. Carstensen and J. Gedicke, An adaptive finite element eigenvalue solver of asymptotic quasi-Optimal computational complexity. SIAM J. Numer. Anal. 50 (2012) 1029–1057. | MR | Zbl | DOI

[13] J. M. Cascon, C. Kreuzer, R. H. Nochetto and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524–2550. | MR | Zbl | DOI

[14] Z. Chen and S. Dai, On the efficiency of adaptive finite element methods for elliptic problems with discontinous coefficients. SIAM J. Sci. Comput. 24 (2002) 443–462. | MR | Zbl | DOI

[15] H. Chen, H. Xie and F. Xu, A full multigrid method for eigenvalue problems. J. Comput. Phys. 322 (2016) 747–759. | MR | DOI

[16] P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl

[17] K. Cliffe, E. Hall and P. Houston, Adaptive discontinuous Galerkin methods for eigenvalue problems arising in incompressible fluid flows. SIAM J. Sci. Comput. 31 (2008) 4607–4632. | MR | Zbl | DOI

[18] X. Dai, J. Xu and A. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110 (2008) 313–355. | MR | Zbl | DOI

[19] S. Giani and I. G. Graham, A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47 (2009) 1067–1091. | MR | Zbl | DOI

[20] W. Hackbusch, Multi-Grid Methods and Applications. Vol.4 of: Computational Mathematics. Springer-Verlag, Berlin-Heidelberg (1985). | MR | Zbl

[21] X. Han, H. Xie and F. Xu, A cascadic multigrid method for eigenvalue problem. J. Comput. Math. 35 (2017) 56–72. | MR

[22] V. Heuveline and R. Rannacher, A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15 (2001) 107–138. | MR | Zbl | DOI

[23] Q. Hong, H. Xie and F. Xu, A Multilevel correction type of adaptive finite element method for eigenvalue problems. SIAM J. Sci. Comput. 40 (2018) A4208–A4235. | MR | DOI

[24] G. Hu, H. Xie and F. Xu, A multilevel correction adaptive finite element method for Kohn-Sham equation. J. Comput. Phys. 355 (2018) 436–449. | MR | DOI

[25] X. Ji, J. Sun and H. Xie, A multigrid method for Helmholtz transmission eigenvalue problems. J. Sci. Comput. 60 (2014) 276–294. | MR | Zbl | DOI

[26] S. Jia, H. Xie, M. Xie and F. Xu, A full multigrid method for nonlinear eigenvalue problems. Sci. China Math. 59 (2016) 2037–2048. | MR | DOI

[27] N. Kuznetsov, T. Kulczycki, M. Kwaśnicki, A. Nazarov, S. Poborchi, I. Polterovich and B. Siudeja, The legacy of Vladimir Andreevich Steklov. Not. Am. Math. Soc. 61 (2014) 9–22. | MR | DOI

[28] Q. Lin and J. Lin, Finite Element Methods: Accuracy and Inprovement. Science Press, Beijing (2006).

[29] Q. Lin and H. Xie, A multi-level correction scheme for eigenvalue problems. Math. Comput. 84 (2015) 71–88. | MR | Zbl | DOI

[30] J. Liu, Y. Liu and J. Sun, An inverse medium problem using Stekloff eigenvalues and a Bayesian approach. Inverse Prob. 35 (2019). | MR

[31] J. Liu, J. Sun and T. Turner, Spectral indicator method for a non-selfadjoint Steklov eigenvalue problem. J. Sci. Comput. 79 (2019) 1814–1831. | MR | DOI

[32] J. Meng and L. Mei, Discontinuous Galerkin methods of the non-selfadjoint Steklov eigenvalue problem in inverse scattering. Appl. Math. Comput. 381 (2020) 125–307. | MR

[33] P. Morin, R. H. Nochetto and K. Siebert, Convergence of adaptive finite element methods. SIAM Rev. 44 (2002) 631–658. | MR | Zbl | DOI

[34] A. D. Russo and A. E. Alonso, A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problem. Comput. Appl. Math. 62 (2011) 4100–4117. | MR | Zbl | DOI

[35] R. Verfürth, A Review of a Posteriori Error Estimation Andadaptive Mesh-refinement Techniques. Wiley-Teubner, New York (1996). | Zbl

[36] H. Xie, A multigrid method for eigenvalue problem. J. Comput. Phys. 274 (2014) 550–561. | MR | DOI

[37] H. Xie, A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34 (2014) 592–608. | MR | Zbl | DOI

[38] H. Xie and X. Wu, A multilevel correction method for interior transmission eigenvalue problem. J. Sci. Comput. 72 (2017) 586–604. | MR | DOI

[39] H. Xie and M. Xie, A multigrid method for the ground state solution of Bose-Einstein condensates. Commun. Comput. Phys. 19 (2016) 648–662. | MR | DOI

[40] H. Xie and M. Xie, Computable error estimates for ground state solution of Bose-Einstein condensates. J. Sci. Comput. 81 (2019) 1072–1087. | MR | DOI

[41] H. Xie, M. Xie, X. Yin and M. Yue, Computable error estimates for a nonsymmetric eigenvalue problem. East Asian J. Appl. Math. 7 (2017) 583–602. | MR | DOI

[42] H. Xie and Z. Zhang, A multilevel correction scheme for nonsymmetric eigenvalue problems by finite element methods. arXiv:1505.06288 (2015). | arXiv

[43] H. Xie and T. Zhou, A multilevel finite element method for Fredholm integral eigenvalue problems. J. Comput. Phys. 303 (2015) 173–184. | MR | DOI

[44] F. Xu, H. Xie and N. Zhang, A parallel augmented subspace method for eigenvalue problems. SIAM J. Sci. Comput. 42 (2020) A2655–A2677. | MR | DOI

[45] J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73 (2003) 1139–1152. | MR | Zbl | DOI

[46] F. Xu, M. Yue, Q. Huang and H. Ma, An asymptotically exact a posteriori error estimator for non-selfadjoint Steklov eigenvalue problem. Appl. Numer. Math. 156 (2020) 210–227. | MR | DOI

[47] Y. Yang, J. Han and H. Bi, Error estimates and a two grid scheme for approximating transmission eigenvalues. arXiv:1506.06486v2 (2016). | arXiv

[48] M. Yue, H. Xie and M. Xie, A cascadic multigrid method for nonsymmetric eigenvalue problem. Appl. Numer. Math. 146 (2019) 55–72. | MR | DOI

[49] Y. Zeng and F. Wang, A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems. Appl. Math. 62 (2017) 243–267. | MR | DOI

[50] S. Zhang, Y. Xi and X. Ji, A multi-level mixed element method for the eigenvalue problem of biharmonic equation. J. Sci. Comput. 75 (2018) 1415–1444. | MR | Zbl | DOI

[51] Y. Zhang, H. Bi and Y. Yang, A multigrid correction scheme for a new Steklov eigenvalue problem in inverse scattering. Int. J. Comput. Math. (2019). DOI:. | DOI | MR | Zbl

[52] Z. Zhang and A. Naga, A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26 (2005) 1192–1213. | MR | Zbl | DOI

[53] O. C. Zienkiewicz and J. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Methods Eng. 33 (1992) 1331–1364. | MR | Zbl | DOI

Cité par Sources :