Existence of traveling wave solutions for the Diffusion Poisson Coupled Model: a computer-assisted proof
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1669-1697

The Diffusion Poisson Coupled Model describes the evolution of a dense oxide layer appearing at the surface of carbon steel canisters in contact with a claystone formation. This model is a one dimensional free boundary problem involving drift-diffusion equations on the density of species (electrons, ferric cations and oxygen vacancies), coupled with a Poisson equation on the electrostatic potential and with moving boundary equations, which describe the evolution of the position of each unknown interfaces of the spatial domain. Numerical simulations suggest the existence of traveling wave solutions for this model. These solutions are defined by stationary profiles on a fixed size domain with interfaces moving both at the same velocity. In this paper, we present and apply a computer-assisted method in order to prove the existence of these traveling wave solutions. We also establish a precise and certified description of the solutions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021037
Classification : 35C07, 35Q92, 47H10, 65G20, 65N35
Keywords: Rigorous numerics, corrosion model, traveling wave solutions, spectral methods, fixed-point argument
@article{M2AN_2021__55_4_1669_0,
     author = {Breden, Maxime and Chainais-Hillairet, Claire and Zurek, Antoine},
     title = {Existence of traveling wave solutions for the {Diffusion} {Poisson} {Coupled} {Model:} a computer-assisted proof},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1669--1697},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/m2an/2021037},
     mrnumber = {4297817},
     zbl = {1506.35219},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021037/}
}
TY  - JOUR
AU  - Breden, Maxime
AU  - Chainais-Hillairet, Claire
AU  - Zurek, Antoine
TI  - Existence of traveling wave solutions for the Diffusion Poisson Coupled Model: a computer-assisted proof
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1669
EP  - 1697
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021037/
DO  - 10.1051/m2an/2021037
LA  - en
ID  - M2AN_2021__55_4_1669_0
ER  - 
%0 Journal Article
%A Breden, Maxime
%A Chainais-Hillairet, Claire
%A Zurek, Antoine
%T Existence of traveling wave solutions for the Diffusion Poisson Coupled Model: a computer-assisted proof
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1669-1697
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021037/
%R 10.1051/m2an/2021037
%G en
%F M2AN_2021__55_4_1669_0
Breden, Maxime; Chainais-Hillairet, Claire; Zurek, Antoine. Existence of traveling wave solutions for the Diffusion Poisson Coupled Model: a computer-assisted proof. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1669-1697. doi: 10.1051/m2an/2021037

[1] G. Arioli, H. Koch and S. Terracini, Two novel methods and multi-mode periodic solutions for the Fermi-Pasta-Ulam model. Commun. Math. Phys. 255 (2005) 1–19. | MR | Zbl | DOI

[2] G. Arioli, F. Gazzola and H. Koch, Uniqueness and bifurcation branches for planar steady Navier-Stokes equations under Navier boundary conditions. J. Math. Fluid Mech. 23 (2021) 1–20. | MR | Zbl

[3] C. Bataillon, Private Communications (2020).

[4] C. Bataillon, F. Bouchon, C. Chainais-Hillairet, C. Desgranges, E. Hoarau, F. Martin, M. Tupin and J. Talandier, Corrosion modelling of iron based alloy in nuclear waste repository. Electrochim. Acta 55 (2010) 4451–4467. | DOI

[5] C. Bataillon, F. Bouchon, C. Chainais-Hillairet, J. Fuhrmann, E. Hoarau and R. Touzani, Numerical methods for simulation of a corrosion model with moving oxide layer. J. Comput. Phys. 231 (2012) 6213–6231. | MR | Zbl | DOI

[6] M. Breden and C. Kuehn, Rigorous validation of stochastic transition paths. J. Math. Pures Appl. 131 (2019) 88–129. | MR | Zbl | DOI

[7] M. Breden, J.-P. Lessard and M. Vanicat, Global bifurcation diagrams of steady states of systems of pdes via rigorous numerics: a 3-component reaction-diffusion system. Act. Appli. Math. 128 (2013) 113–152. | MR | Zbl | DOI

[8] M. Breden, C. Chainais-Hillairet and A. Zurek, Matlab code for “Existence of traveling wave solutions for the Diffusion Poisson Coupled Model: a computer-assisted proof’’. (2021). https://github.com/MaximeBreden/DPCM. | MR | Zbl

[9] C. Chainais-Hillairet and C. Bataillon, Mathematical and numerical study of a corrosion model. Numer. Math. 110 (2008) 1–25. | MR | Zbl | DOI

[10] C. Chainais-Hillairet and T. O. Gallouët, Study of a pseudo-stationary state for a corrosion model: existence and numerical approximation. Nonlinear Anal. Real World Appl. 31 (2016) 38–56. | MR | Zbl | DOI

[11] S. Day, J.-P. Lessard and K. Mischaikow, Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal. 45 (2007) 1398–1424. | MR | Zbl | DOI

[12] M. Gameiro, J.-P. Lessard and A. Pugliese, Computation of smooth manifolds via rigorous multi-parameter continuation infinite dimensions. Found. Comput. Math. 16 (2016) 531–575. | MR | Zbl | DOI

[13] J. Gómez-Serrano, Computer-assisted proofs in pde: a survey. SeMA J. 76 (2019) 459–484. | MR | Zbl | DOI

[14] H. Koch, A. Schenkel and P. Wittwer, Computer-assisted proofs in analysis and programming in logic: a case study. SIAM Rev. 38 (1996) 565–604. | MR | Zbl | DOI

[15] J.-P. Lessard and C. Reinhardt, Rigorous numerics for nonlinear differential equations using Chebyshev series. SIAM J. Numer. Anal. 52 (2014) 1–22. | MR | Zbl | DOI

[16] M. T. Nakao, M. Plum and Y. Watanabe, Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations. Springer (2019). | MR | DOI

[17] S. M. Rump, INTLAB – INTerval LABoratory. Developments in Reliable Computing, Kluwer Academic Publishers, Dordrecht (1999) 77–104. | Zbl

[18] S. M. Rump, Verification methods: Rigorous results using floating-point arithmetic. Acta Numer. 19 (2010) 287–449. | MR | Zbl | DOI

[19] R. S. S. Sheombarsing, Validated Chebyshev-based computations for ordinary and partial differential equations. Ph.D. thesis, Vrije Universiteit Amsterdam (2018).

[20] L. Trefethen, Approximation Theory and Approximation Practice. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2013). | MR | Zbl

[21] W. Tucker, Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press (2011). | MR | Zbl

[22] J. B. Van Den Berg and J.-P. Lessard, Rigorous numerics in dynamics. Notices Amer. Math. Soc. 62 (2015) 1057–1061. | MR | Zbl | DOI

[23] J. B. Van Den Berg and E. Queirolo, A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. J. Comput. Dyn. 8 (2020) 59–97. | MR | Zbl | DOI

[24] J. B. Van Den Berg and J. F. Williams, Optimal periodic structures with general space group symmetries in the Ohta-Kawasaki problem. Phys. D: Nonlinear Phenom. 415 (2021) 132732. | MR | Zbl | DOI

[25] J. B. Van Den Berg, J.-P. Lessard and K. Mischaikow, Global smooth solution curves using rigorous branch following. Math. Comp. 79 (2010) 1565–1584. | MR | Zbl | DOI

[26] T. Wanner, Computer-assisted bifurcation diagram validation and applications in materials science. In: Vol. 74 of Proc. Sympos. Appl. Math. Rigorous Numerics in Dynamics. Amer. Math. Soc., Providence, R I (2018) 123–174. | MR | Zbl | DOI

[27] N. Yamamoto, A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem. SIAM J. Numer. Anal. 35 (1998) 2004–2013. | MR | Zbl | DOI

Cité par Sources :