Numerical analysis of a Reynolds Stress Model for turbulent mixing: the one-dimensional case
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1699-1740

A mixed hyperbolic-parabolic, non conservative, Reynolds Stress Model (RSM), is studied. It is based on an underlying set of Langevin equations, and allows to describe turbulent mixing, including transient demixing effects as well as incomplete mixing. Its mathematical structure is analysed, and specific regimes, related to acoustic-like, Riemann-type, or self-similar solutions, are identified. A second-order accurate numerical scheme is proposed in arbitrary curvilinear geometry. Its accuracy and convergence behaviour are tested by comparison with analytical solutions in the different regimes. The numerical scheme can be generalized to multi-dimensional configurations, with potentially cylindrical symmetry, on unstructured meshes.

DOI : 10.1051/m2an/2021035
Classification : 65M12, 65M22, 76F25
Keywords: Turbulence, Reynolds Stress Model, incomplete mixing, demixing, hyperbolic system
@article{M2AN_2021__55_5_1699_0,
     author = {Blanc, Xavier and Colavolpe, Charles and Duclous, Roland and Griffond, J\'er\^ome and Soulard, Olivier},
     title = {Numerical analysis of a {Reynolds} {Stress} {Model} for turbulent mixing: the one-dimensional case},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1699--1740},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021035},
     mrnumber = {4313372},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021035/}
}
TY  - JOUR
AU  - Blanc, Xavier
AU  - Colavolpe, Charles
AU  - Duclous, Roland
AU  - Griffond, Jérôme
AU  - Soulard, Olivier
TI  - Numerical analysis of a Reynolds Stress Model for turbulent mixing: the one-dimensional case
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1699
EP  - 1740
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021035/
DO  - 10.1051/m2an/2021035
LA  - en
ID  - M2AN_2021__55_5_1699_0
ER  - 
%0 Journal Article
%A Blanc, Xavier
%A Colavolpe, Charles
%A Duclous, Roland
%A Griffond, Jérôme
%A Soulard, Olivier
%T Numerical analysis of a Reynolds Stress Model for turbulent mixing: the one-dimensional case
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1699-1740
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021035/
%R 10.1051/m2an/2021035
%G en
%F M2AN_2021__55_5_1699_0
Blanc, Xavier; Colavolpe, Charles; Duclous, Roland; Griffond, Jérôme; Soulard, Olivier. Numerical analysis of a Reynolds Stress Model for turbulent mixing: the one-dimensional case. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1699-1740. doi: 10.1051/m2an/2021035

[1] P. Arnault, Modeling viscosity and diffusion of plasma for pure elements and multicoponent mixtures from weakly to strongly coupled regimes. High Energy Density Phys. 9 (2013) 711–721. | DOI

[2] A. Banerjee, R. A. Gore and M. J. Andrews, Development and validation of a turbulent-mix model for variable-density and compressible flows. Phys. Rev. E 82 (2010) 046309. | MR | DOI

[3] G.-I. Barenblatt, Self-similar turbulence propagation from an instantaneous plane source. Nonlinear Dyn. Turbul. (1983) 48–60. | MR | Zbl

[4] C. Berthon and V. Desveaux, An entropy preserving MOOD scheme for the Euler equations. Int. J. Finite 11 (2014) 39. | MR

[5] C. Berthon and D. Reigner, An approximate nonlinear projection scheme for a combustion model. ESAIM: M2AN 37 (2003) 451–478. Doi: . | DOI | MR | Zbl | Numdam

[6] C. Berthon, F. Coquel, J.-M. Hérard and M. Uhlmann, An approximate solution of the Riemann problem for a realizable second-moment turbulent closure. Shock. Waves 11 (2002) 245–269. | Zbl | DOI

[7] F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws. Birkhäuser Basel (2004). | MR | Zbl | DOI

[8] Y. Bury, P. Graumer, S. Jamme and J. Griffond, Turbulent transition of a gaseous mixing zone induced by the Richtmyer-Meshkov instability. Phys. Rev. Fluids 5 (2020) 024101. | DOI

[9] G. Carré, S. Del Pino, B. Després and E. Labourasse, A cell centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. J. Comput. Phys. 228 (2009) 5160–5183. | MR | Zbl | DOI

[10] C. Cherfils and A. K. Harrison, Comparison of different statistical models of turbulence by similarity methods. In: Presented at the 1994 ASME Fluids Engineering Summer Meeting (May 1994) 19.

[11] J.-F. Clouet, The Rosseland approximation for radiative transfer problems in heterogeneous media. J. Quant. Spectrom. Radiat. Transfer 58 (1997) 33–43. | DOI

[12] F. Delarue and F. Lagoutière, Probabilistic analysis of the upwind scheme for transport equations. Arch. Ration. Mech. Anal. 199 (2011) 229–268. | MR | Zbl | DOI

[13] B. Després and C. Mazeran, Lagrangian gaz dynamics in two dimensions and lagrangian schemes. Arch. Ration. Mech. Anal. 178 (2005) 327–371. | MR | Zbl | DOI

[14] C. Dopazo, Probability density function approach for a turbulent axisymmetric heated jet. Centreline evolution. Phys. Fluids 18 (1975) 397–404. | Zbl | DOI

[15] C. Emako, V. Letizia, N. Petrova, R. Sainct, R. Duclous and O. Soulard, Diffusion limit of the simplified Langevin PDF model in weakly inhomogeneous turbulence. ESAIM: Proc. Surv. 48 (2015) 400–419. | MR | DOI

[16] A. Favre, L. S. G. Kovasznay, R. Dumas, J. Gaviglio and M. Coantic, La turbulence en mécanique des fluides: bases théoriques et expérimentales, méthodes statistiques. Gauthier-Villars, Paris (1976).

[17] S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. | MR | Zbl | DOI

[18] B.-J. Gréa, The dynamics of the k ϵ mix model toward its self-similar Rayleigh-Taylor solution. J. Turbulence 16 (2015) 184–202. | MR | DOI

[19] O. Grégoire, D. Souffland and S. Gauthier, A second-order turbulence model for gaseous mixtures induced by Richtmyer-Meshkov instability. J. Turbul. 6 (2005) N29. | MR | DOI

[20] J. Griffond and O. Soulard, Evaluation of augmented RSM for interaction of homogeneous turbulent mixture with shock and rarefaction waves. J. Turbul. 15 (2014) 569–595. | MR | DOI

[21] J. Griffond, O. Soulard and D. Souffland, A turbulent mixing Reynolds stress model fitted to match linear interaction analysis predictions. Phys. Scr. 2010 (2010) 014059. | DOI

[22] J. Griffond, J.-F. Hass, D. Souffland, G. Bouzgarrou, Y. Bury and S. Jamme, Experimental and numerical investigation of the growth of an air/SF6 turbulent mixing zone in a shock tube. J. Fluid Eng. 139 (2017) 091205. | DOI

[23] J. O. Hinze, Turbulence, 2nd edition.. McGraw-Hill, New York (1975).

[24] K. K. Mackay and J. E. Pino, Modeling gas-shell mixing in icf with separated reactants. Phys. Plasmas 27 (2020) 092704. | DOI

[25] P.-H. Maire, Contribution to the numerical modeling of Inertial Confinement Fusion, Habilitation à diriger des recherches, Université Bordeaux I(February 2011).

[26] B. Meltz, Analyse mathématiques et numérique de système hydrodynamique compressible et de photonique en coordonnées polaires. Ph.D. thesis, Université Paris-Saclay (2015).

[27] B. Merlet and J. Vovelle, Error estimate for finite volume scheme. Numer. Math. 106 (2007) 129–155. | MR | Zbl | DOI

[28] B. Morgan, B. Olson, W. Black and J. Mcfarland, Large-eddy simulation and Reynolds-averaged Navier-Stokes modeling of a reacting Rayleigh-Taylor mixing layer in a spherical geometry. Phys. Rev. E 98 (2018) 033111. | DOI

[29] F. Poggi, M.-H. Thorembey and R. Gérard, Velocity measurements in turbulent gaseous mixtures induced by Richtmyer-Meshkov instability. Phys. Fluids 10 (1998) 2698–2700. | DOI

[30] S. B. Pope, PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11 (1985) 119–192. | DOI

[31] S. B. Pope, On the relationship between stochastic Lagrangian models of turbulence and second-moment closures. Phys. Fluids 6 (1994) 973–985. | Zbl | DOI

[32] S. B. Pope, Turbulent Flows. Cambridge University Press (2000). | MR | Zbl

[33] J. R. Ristorcelli, Exact statistical results for binary mixing and reaction in variable density turbulence. Phys. Fluids 29 (2017) 020705. | DOI

[34] R. Schiestel, Méthodes de Modélisation et de Simulation des Ecoulements Turbulents. Hermès/Lavoisier (2006). | MR

[35] R. Schiestel, Modeling and Simulation of Turbulent Flows. John Wiley & Sons, Ltd. (2008). | MR | DOI

[36] D. Souffland, O. Soulard and J. Griffond, Modeling of Reynolds stress models for diffusion fluxes inside shock waves. J. Fluids Eng. 136 (2014) 091102. | DOI

[37] O. Soulard, F. Guillois, J. Griffond, V. Sabelnikov and S. Simoëns, Permanence of large eddies in Richtmyer-Meshkov turbulence with a small Atwood number. Phys. Rev. Fluids 3 (2018) 104603. | DOI

[38] O. Soulard, F. Guillois, J. Griffond, V. Sabelnikov and S. Simoëns, A two-scale Langevin pdf model for Richtmyer-Meshkov turbulence with a small Atwood number. Phys. D: Nonlinear Phenom. 403 (2020) 132276. | MR | DOI

[39] D. Veynante and L. Vervisch, Turbulent combustion modeling. Prog. Energy Combust. Sci. 28 (2002) 193–266. | DOI

[40] G. Viciconte, B.-J. Gréa, F. S. Godefer, P. Arnault and J. Clérouin, Sudden diffusion of turbulent mixing layers in weakly coupled plasmas under compression. Phys. Rev E 100 (2019) 063205. | DOI

[41] J. Vides, B. Braconnier, E. Audit, C. Berthon and B. Nkonga, A Godunov-Type solver for the numerical approximation of gravitational flows. Commun. Comput. Phys. 15 (2014) 46–75. | MR | DOI

[42] E. L. Vold, A. S. Joglekar, M. I. Ortega, R. Moll, D. Fenn and M. Kim, Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations. Phys. Plasmas 22 (2015) 112708. | DOI

[43] J. H. Williamson, Low storage Runge-Kutta schemes. J. Comput. Phys. 35 (1980) 48–56. | MR | Zbl | DOI

[44] J. G. Wouchuk and K. Nishihara, Asymptotic growth in the linear Richtmyer-Meshkov instability. Phys. Plasmas 4 (1997) 1028–1038. | MR | DOI

Cité par Sources :