Asymptotic derivation and simulations of a non-local Exner model in large viscosity regime
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1635-1668

The present paper deals with the modeling and numerical approximation of bed load transport under the action of water. A new shallow water type model is derived from the stratified two-fluid Navier–Stokes equations. Its novelty lies in the magnitude of a viscosity term that leads to a momentum equation of elliptic type. The full model, sediment and water, verifies a dissipative energy balance for smooth solutions. The numerical resolution of the sediment layer is not trivial since the viscosity introduces a non-local term in the model. Adding a transport threshold makes the resolution even more challenging. A scheme based on a staggered discretization is proposed for the full model, sediment and water.

DOI : 10.1051/m2an/2021031
Classification : 35L65, 65C20, 86A05
Keywords: Free surface flow, shallow water equations, sediment transport, entropy dissipation, non-local effects
@article{M2AN_2021__55_4_1635_0,
     author = {Audusse, Emmanuel and Boittin, L\'ea and Parisot, Martin},
     title = {Asymptotic derivation and simulations of a non-local {Exner} model in large viscosity regime},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1635--1668},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/m2an/2021031},
     mrnumber = {4293496},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021031/}
}
TY  - JOUR
AU  - Audusse, Emmanuel
AU  - Boittin, Léa
AU  - Parisot, Martin
TI  - Asymptotic derivation and simulations of a non-local Exner model in large viscosity regime
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1635
EP  - 1668
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021031/
DO  - 10.1051/m2an/2021031
LA  - en
ID  - M2AN_2021__55_4_1635_0
ER  - 
%0 Journal Article
%A Audusse, Emmanuel
%A Boittin, Léa
%A Parisot, Martin
%T Asymptotic derivation and simulations of a non-local Exner model in large viscosity regime
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1635-1668
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021031/
%R 10.1051/m2an/2021031
%G en
%F M2AN_2021__55_4_1635_0
Audusse, Emmanuel; Boittin, Léa; Parisot, Martin. Asymptotic derivation and simulations of a non-local Exner model in large viscosity regime. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1635-1668. doi: 10.1051/m2an/2021031

[1] R. Abgrall and S. Karni, Two-layer shallow water system: a relaxation approach. SIAM J. Sci. Comput. 31 (2009) 1603–1627. | MR | Zbl | DOI

[2] C. Acary-Robert, E. D. Fernández-Nieto, G. Narbona-Reina and P. Vigneaux, A well-balanced finite volume-augmented Lagrangian method for an integrated Herschel-Bulkley model. J. Sci. Comput. 53 (2012) 608–641. | MR | Zbl | DOI

[3] E. Audusse, M.-O. Bristeau, M. Pelanti and J. Sainte-Marie, Approximation of the hydrostatic Navier-Stokes system for density stratified flows by a multilayer model: kinetic interpretation and numerical solution. J. Comput. Phys. 230 (2011) 3453–3478. | MR | Zbl | DOI

[4] E. Audusse, M.-O. Bristeau, B. Perthame and J. Sainte-Marie, A multilayer Saint-Venant system with mass exchanges for Shallow Water flows. Derivation and numerical validation. ESAIM: M2AN 45 (2011) 169–200. | MR | Zbl | Numdam | DOI

[5] C. Berthon, M. Bessemoulin-Chatard and H. Mathis, Numerical convergence rate for a diffusive limit of hyperbolic systems: p -system with damping. SMAI J. Comput. Math. 2 (2016) 99–119. | MR | DOI

[6] F. Bouchut and T. M. De Luna, An entropy-satisfying scheme for two-layer Shallow-Water equations with uncoupled treatment. ESAIM: M2AN 42 (2008) 683–698. | MR | Zbl | Numdam | DOI

[7] A. Bouharguane and B. Mohammadi, Minimisation principles for the evolution of a soft sea bed interacting with a shallow sea. Int. J. Comput. Fluid Dyn. 26 (2012) 163–172. | MR | DOI

[8] D. Doyen and P. H. Gunawan, An explicit staggered finite volume scheme for the shallow water equations, edited by J. Fuhrmann, M. Ohlberger and C. Rohde. In: Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects. Springer International Publishing, Cham (2014) 227–235. | MR | Zbl

[9] F. Engelund and E. Hansen, Investigations of flow in alluvial streams. In: Vol. 35 of Acta Polytechnica Scandinavica/Civil Engineering and Building Construction Series. Danish Academy of Technical Sciences (1966).

[10] R. Eymard and P. H. Gunawan, Staggered scheme for the Exner-shallow water equations. Comput. Geosci. 19 (2015) 1197–1206. | MR | DOI

[11] E. D. Fernández-Nieto, E. H. Koné, T. M. De Luna and R. Bürger, A multilayer shallow water system for polydisperse sedimentation. J. Comput. Phys. 238 (2013) 281–314. | MR | Zbl | DOI

[12] E. Fernández-Nieto, T. M. De Luna, G. Narbona-Reina and J. D. Zabsonré, Formal deduction of the Saint-Venant-Exner model including arbitrarily sloping sediment beds and associated energy. ESIAM: M2AN 51 (2017) 115–145. | MR | Zbl | Numdam

[13] A. C. Fowler, Geomorphological Fluid Mechanics. Chapter Dunes and drumlins. Springer-Verlag, Berlin (2001) 430–454. | Zbl | DOI

[14] J. Fredsøe, On the development of dunes in erodible channel. J. Fluid Mech. 64 (1974) 1–16. | Zbl | DOI

[15] J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant System for Laminar Shallow water. Discrete Continuous Dyn. Syst. Ser. B 1 (2001) 89–102. | MR | Zbl | DOI

[16] T. Goudon and M. Parisot, On the Spitzer-Härm regime and nonlocal approximations: modeling, analysis and numerical simulations. Multiscale Model. Simul. 9 (2011) 568–600. | MR | Zbl | DOI

[17] T. Goudon and M. Parisot, Finite volume schemes on unstructured grids for non-local models: application to the simulation of heat transport in plasmas. J. Comput. Phys. 231 (2012) 8188–8208. | Zbl | DOI

[18] A. J. Grass, Sediment transport by waves and currents. Technical Report FL29, SERC London Cent. Mar. Technol. (1981).

[19] A. F. Gulbransen, V.L. Hauge and K.-A. Lie, A multiscale mixed finite element method for Vuggy and naturally fractured reservoirs. SPE J. 15 (2010) 395–403. | DOI

[20] R. Herbin, W. Kheriji and J.-C. Latché, On some implicit and semi-implicit staggered schemes for the shallow water and euler equations. ESAIM: M2AN 48 (2014) 1807–1857. | MR | Zbl | Numdam | DOI

[21] F. James, P.-Y. Lagrée, M. H. Le and M. Legrand, Towards a new friction model for shallow water equations through an interactive viscous layer. ESAIM: M2AN 53 (2019) 269–299. | MR | Numdam | DOI

[22] E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30 (1971) 235–248. | Zbl | DOI

[23] J. F. Kennedy, The mechanics of dunes and antidunes in erodible bed channels. J. Fluid Mech. 16 (1963) 521–544. | Zbl | DOI

[24] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34 (1981) 481–524. | MR | Zbl | DOI

[25] S. Klainerman and A. Majda, Compressible and incompressible fluids. Commun. Pure Appl. Math. 35 (1982) 629–651. | MR | Zbl | DOI

[26] P.-Y. Lagrée, A triple deck model of ripple formation and evolution. Phys. Fluids 15 (2003) 2355–2368. | MR | Zbl | DOI

[27] D. K. Lysne, Movement of sand in tunnels. Proc. A.S.C.E. 95 (1969) 1835–1846.

[28] R. Manning, On the flow of water in open channels and pipes. Trans. Inst. Civ. Eng. Ireland (1891) 161–207.

[29] A. F. Messiter, Boundary-layer flow near the trailing edge of a flat plate. SIAM J. Appl. Math. 18 (1970) 241–257. | Zbl | DOI

[30] B. Mohammadi and A. Bouharguane, Optimal dynamics of soft shapes in shallow waters. Comput. Fluids 40 (2011) 291–298. | MR | Zbl | DOI

[31] C. S. Patlak, Random walk with persistence and external bias. Bull. Math. Biophys. 15 (1953) 311–338. | MR | Zbl | DOI

[32] H. E. Reports, editor. Formulas for Bed-Load Transport., International Association for Hydraulic Structures Research (1948).

[33] G. Rosatti, L. Bonaventura, A. Deponti and G. Garegnani, An accurate and efficient semi-implicit method for section-averaged free-surface flow modelling. Int. J. Numer. Methods Fluids 65 (2011) 448–473. | MR | Zbl | DOI

[34] G. P. Schurtz, P. D. Nicolaï and M. Busquet, A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes. Phys. Plasmas 7 (2000) 4238–4249. | DOI

[35] B. Spinewine, Two-layer flow behaviour and the effects of granular dilatancy in dam-break induced sheet-flow. PhD thesis, Université catholique de Louvain (2005).

[36] P. A. Tassi, S. Rhebergen, C. A. Vionnet and O. Bokhove, A discontinuous Galerkin finite element model for river bed evolution under shallow flows. Comput. Methods Appl. Mech. Eng. 197 (2008) 2930–2947. | MR | Zbl | DOI

[37] L. Van Rijn, Sediment transport – Part I: bed load – Part II: suspended load. J. Hydraulic Div. 110 (1984) 1431–1456. | DOI

[38] S. Vater, A new projection method for the Zero Froude number shallow water equations. . PhD thesis. Free University Berlin (2004).

[39] Y. Zech, S. Soares-Frazão, B. Spinewine, C. Savary and L. Goutière, Inertia effects in bed-load transport models. Can. J. Civ. Eng. 36 (2009) 1587–1597.

Cité par Sources :