MDFEM: Multivariate decomposition finite element method for elliptic PDEs with lognormal diffusion coefficients using higher-order QMC and FEM
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1461-1505

We introduce the multivariate decomposition finite element method (MDFEM) for elliptic PDEs with lognormal diffusion coefficients, that is, when the diffusion coefficient has the form a = exp(Z) where Z is a Gaussian random field defined by an infinite series expansion Z(𝐲)= j y j ϕ j with y j :𝒩(0,1) and a given sequence of functions {ϕ j } j1 . We use the MDFEM to approximate the expected value of a linear functional of the solution of the PDE which is an infinite-dimensional integral over the parameter space. The proposed algorithm uses the multivariate decomposition method (MDM) to compute the infinite-dimensional integral by a decomposition into finite-dimensional integrals, which we resolve using quasi-Monte Carlo (QMC) methods, and for which we use the finite element method (FEM) to solve different instances of the PDE. We develop higher-order quasi-Monte Carlo rules for integration over the finite-dimensional Euclidean space with respect to the Gaussian distribution by use of a truncation strategy. By linear transformations of interlaced polynomial lattice rules from the unit cube to a multivariate box of the Euclidean space we achieve higher-order convergence rates for functions belonging to a class of anchored Gaussian Sobolev spaces while taking into account the truncation error. These cubature rules are then used in the MDFEM algorithm. Under appropriate conditions, the MDFEM achieves higher-order convergence rates in terms of error versus cost, i.e., to achieve an accuracy of O(ε) the computational cost is O(ϵ -1/λ-d'/λ )=O(ϵ -(p * +d'/τ)/(1-p * ) ) where ε$$ and ε$$) are respectively the cost of the quasi-Monte Carlo cubature and the finite element approximations, with d′= d (1+δ′) for some δ′ ≥ 0 and d the physical dimension, and 0<p * (2+d'/τ) -1 is a parameter representing the sparsity of {ϕ j } j1 .

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021029
Classification : 65D30, 65D32, 65N30
Keywords: Elliptic PDE, stochastic diffusion coefficient, lognormal case, infinite-dimensional integration, multivariate decomposition method, finite element method, higher-order quasi-Monte Carlo, high dimensional quadrature/cubature, complexity bounds
@article{M2AN_2021__55_4_1461_0,
     author = {Nguyen, Dong T. P. and Nuyens, Dirk},
     title = {MDFEM: {Multivariate} decomposition finite element method for elliptic {PDEs} with lognormal diffusion coefficients using higher-order {QMC} and {FEM}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1461--1505},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/m2an/2021029},
     mrnumber = {4290093},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021029/}
}
TY  - JOUR
AU  - Nguyen, Dong T. P.
AU  - Nuyens, Dirk
TI  - MDFEM: Multivariate decomposition finite element method for elliptic PDEs with lognormal diffusion coefficients using higher-order QMC and FEM
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1461
EP  - 1505
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021029/
DO  - 10.1051/m2an/2021029
LA  - en
ID  - M2AN_2021__55_4_1461_0
ER  - 
%0 Journal Article
%A Nguyen, Dong T. P.
%A Nuyens, Dirk
%T MDFEM: Multivariate decomposition finite element method for elliptic PDEs with lognormal diffusion coefficients using higher-order QMC and FEM
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1461-1505
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021029/
%R 10.1051/m2an/2021029
%G en
%F M2AN_2021__55_4_1461_0
Nguyen, Dong T. P.; Nuyens, Dirk. MDFEM: Multivariate decomposition finite element method for elliptic PDEs with lognormal diffusion coefficients using higher-order QMC and FEM. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1461-1505. doi: 10.1051/m2an/2021029

[1] M. Bachmayr, A. Cohen, R. Devore and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients. ESAIM: M2AN 51 (2017) 341–363. | MR | Numdam | DOI

[2] M. Bachmayr, A. Cohen, D. Dũng and C. Schwab, Fully discrete approximation of parametric and stochastic elliptic PDEs. SIAM J. Numer. Anal. 55 (2017) 2151–2186. | MR | DOI

[3] M. Bachmayr, A. Cohen and G. Migliorati, Representations of Gaussian random fields and approximation of elliptic PDEs with lognormal coefficients. J. Fourier Anal. App. 24 (2018) 621–649. | MR | DOI

[4] J. Baldeaux and J. Dick, QMC rules of arbitrary high order: reproducing kernel Hilbert space approach. Constr. Approx. 30 (2009) 495–527. | MR | Zbl | DOI

[5] J. Baldeaux, J. Dick, G. Leobacher, D. Nuyens and F. Pillichshammer, Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules. Numer. Algorithms 59 (2012) 403–431. | MR | Zbl | DOI

[6] J. Dick and M. Gnewuch, Infinite-dimensional integration in weighted Hilbert spaces: anchored decompositions, optimal deterministic algorithms, and higher-order convergence. Found. Comput. Math. 14 (2014) 1027–1077. | MR | Zbl | DOI

[7] J. Dick, F. Y. Kuo, F. Pillichshammer and I. H. Sloan, Construction algorithms for polynomial lattice rules for multivariate integration. Math. Comput. 74 (2005) 1895–1921. | MR | Zbl | DOI

[8] J. Dick, F. Y. Kuo, Q. T. Le Gia, D. Nuyens and C. Schwab, Higher order QMC Petrov-Galerkin discretization for affine parametric operator equations with random field inputs. SIAM J. Numer. Anal. 52 (2014) 2676–2702. | MR | DOI

[9] J. Dick, C. Irrgeher, G. Leobacher and F. Pillichshammer, On the optimal order of integration in Hermite spaces with finite smoothness. SIAM J. Numer. Anal. 56 (2018) 684–707. | MR | DOI

[10] A. D. Gilbert, F. Y. Kuo, D. Nuyens and G. W. Wasilkowski, Efficient implementations of the multivariate decomposition method for approximating infinite-variate integrals. SIAM J. Sci. Comput. 40 (2018) A3240–A3266. | MR | DOI

[11] M. Gnewuch, S. Mayer and K. Ritter, On weighted Hilbert spaces and integration of functions of infinitely many variables. J. Complexity 30 (2014) 29–47. | MR | Zbl | DOI

[12] M. Gnewuch, M. Hefter, A. Hinrichs and K. Ritter, Embeddings of weighted Hilbert spaces and applications to multivariate and infinite-dimensional integration. J. Approx. Theory 222 (2017) 8–39. | MR | DOI

[13] T. Goda, Good interlaced polynomial lattice rules for numerical integration in weighted Walsh spaces. J. Comput. Appl. Math. 285 (2015) 279–294. | MR | DOI

[14] I. G. Graham, F. Y. Kuo, J. A. Nichols, R. Scheichl, C. Schwab and I. H. Sloan, Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131 (2015) 329–368. | MR | DOI

[15] I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl and I. H. Sloan, Circulant embedding with QMC: analysis for elliptic PDE with lognormal coefficients. Numer. Math. 140 (2018) 479–511. | MR | DOI

[16] L. Herrmann, Strong convergence analysis of iterative solvers for random operator equations. Calcolo 56 (2019) 46. | MR | DOI

[17] L. Herrmann and C. Schwab, Multilevel quasi-Monte Carlo integration with product weights for elliptic PDEs with lognormal coefficients. ESAIM: M2AN 53 (2019) 1507–1552. | MR | Numdam | DOI

[18] L. Herrmann and C. Schwab, QMC integration for lognormal-parametric, elliptic PDEs: local supports and product weights. Numer. Math. 141 (2019) 63–102. | MR | DOI

[19] C. Irrgeher and G. Leobacher, High-dimensional integration on d , weighted Hermite spaces, and orthogonal transforms. J. Complexity 31 (2015) 174–205. | MR | Zbl | DOI

[20] C. Irrgeher, P. Kritzer, G. Leobacher and F. Pillichshammer, Integration in Hermite spaces of analytic functions. J. Complexity 31 (2015) 380–404. | MR | DOI

[21] Y. Kazashi, Quasi-Monte Carlo integration with product weights for elliptic PDEs with log-normal coefficients. IMA J. Numer. Anal. 39 (2018) 1563–1593. | MR | DOI

[22] F. Y. Kuo and D. Nuyens, Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients: a survey of analysis and implementation. Found. Comput. Math. 16 (2016) 1631–1696. | MR | DOI

[23] F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski and B. J. Waterhouse, Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands. J. Complexity 26 (2010) 135–160. | MR | Zbl | DOI

[24] F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski and H. Woźniakowski, Liberating the dimension, J. Complexity 26 (2010) 422–454. | MR | Zbl | DOI

[25] F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski and H. Woźniakowski, On decompositions of multivariate functions. Math. Comput. 79 (2010) 953–966. | MR | Zbl | DOI

[26] F. Y. Kuo, D. Nuyens, L. Plaskota, I. H. Sloan and G. W. Wasilkowski, Infinite-dimensional integration and the multivariate decomposition method. J. Comput. Appl. Math. 326 (2017) 217–234. | MR | DOI

[27] D. T. P. Nguyen and D. Nuyens, Multivariate integration over s with exponential rate of convergence. J. Comput. Appl. Math. 315 (2017) 327–342. | MR | DOI

[28] D. T. P. Nguyen and D. Nuyens, MDFEM: multivariate decomposition finite element method for elliptic PDEs with uniform random diffusion coefficients using higher-order QMC and FEM. Numer. Math. (2021). Accepted. | MR

[29] J. A. Nichols and F. Y. Kuo, Fast CBC construction of randomly shifted lattice rules achieving 𝒪(n -1+δ ) convergence for unbounded integrands over s in weighted spaces with POD weights. J. Complexity 30 (2014) 444–468. | MR | Zbl | DOI

[30] E. Novak and H. Woźniakowski, Tractability of Multivariate Problems. Volume II: Standard Information for Functionals. European Mathematical Society, Zürich 12 (2010). | MR | Zbl

[31] L. Plaskota and G. W. Wasilkowski, Tractability of infinite-dimensional integration in the worst case and randomized settings. J. Complexity 27 (2011) 505–518. | MR | Zbl | DOI

[32] G. Wahba, Spline Models for Observational Data. In: Vol. 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, PA (1990). | MR | Zbl

Cité par Sources :