Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1599-1633

We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected squared L2 misfit between the state (i.e. solution to the PDE) and a target function, subject to a regularization for well posedness. For the numerical treatment of this risk-averse Optimal Control Problem (OCP) we consider a Finite Element discretization of the underlying PDE, a Monte Carlo sampling method, and gradient-type iterations to obtain the approximate optimal control. We provide full error and complexity analyses of the proposed numerical schemes. In particular we investigate the complexity of a conjugate gradient method applied to the fully discretized OCP (so called Sample Average Approximation), in which the Finite Element discretization and Monte Carlo sample are chosen in advance and kept fixed over the iterations. This is compared with a Stochastic Gradient method on a fixed or varying Finite Element discretization, in which the expectation in the computation of the steepest descent direction is approximated by Monte Carlo estimators, independent across iterations, with small sample sizes. We show in particular that the second strategy results in an improved computational complexity. The theoretical error estimates and complexity results are confirmed by numerical experiments.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021025
Classification : 35Q93, 49M99, 65C05, 65N12, 65N30
Keywords: PDE constrained optimization, risk-averse optimal control, optimization under uncertainty, PDE with random coefficients, sample average approximation, stochastic approximation, stochastic gradient, Monte Carlo
@article{M2AN_2021__55_4_1599_0,
     author = {Martin, Matthieu and Krumscheid, Sebastian and Nobile, Fabio},
     title = {Complexity {Analysis} of stochastic gradient methods for {PDE-constrained} optimal {Control} {Problems} with uncertain parameters},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1599--1633},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/m2an/2021025},
     mrnumber = {4294188},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021025/}
}
TY  - JOUR
AU  - Martin, Matthieu
AU  - Krumscheid, Sebastian
AU  - Nobile, Fabio
TI  - Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1599
EP  - 1633
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021025/
DO  - 10.1051/m2an/2021025
LA  - en
ID  - M2AN_2021__55_4_1599_0
ER  - 
%0 Journal Article
%A Martin, Matthieu
%A Krumscheid, Sebastian
%A Nobile, Fabio
%T Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1599-1633
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021025/
%R 10.1051/m2an/2021025
%G en
%F M2AN_2021__55_4_1599_0
Martin, Matthieu; Krumscheid, Sebastian; Nobile, Fabio. Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1599-1633. doi: 10.1051/m2an/2021025

[1] A. Ahmad Ali, E. Ullmann and M. Hinze, Multilevel Monte Carlo analysis for optimal control of elliptic PDEs with random coefficients. SIAM/ASA J. Uncertain. Quantif. 5 (2017) 466–492. | MR | DOI

[2] A. Alexanderian, N. Petra, G. Stadler and O. Ghattas, Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations. SIAM/ASA J. Uncertain. Quantif. 5 (2017) 1166–1192. | MR | DOI

[3] I. Babuska, R. Tempone and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800–825. | MR | Zbl | DOI

[4] I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM review 52 (2010) 317–355. | MR | Zbl | DOI

[5] O. Bardou, N. Frikha and G. Pagès, Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling. Monte Carlo Methods Appl. 15 (2009) 173–210. | MR | Zbl | DOI

[6] P. Benner, A. Onwunta and M. Stoll, Block-diagonal preconditioning for optimal control problems constrained by PDEs with uncertain inputs. SIAM J. Matrix Anal. Appl. 37 (2016) 491–518. | MR | DOI

[7] A. Borzì and G. Von Winckel, A POD framework to determine robust controls in PDE optimization. Comput. Vis. Sci. 14 (2011) 91–103. | MR | Zbl | DOI

[8] A. Borz and V. Schulz, Computational optimization of systems governed by partial differential equations. Soc. Ind. Appl. Math. (SIAM). Philadelphia, PA (2010). | MR | Zbl

[9] A. Borzì, V. Schulz, C. Schillings and G. Von Winckel, On the treatment of distributed uncertainties in PDE-constrained optimization. GAMM-Mitteilungen 33 (2010) 230–246. | MR | Zbl | DOI

[10] P. Chen and A. Quarteroni, Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraint. SIAM/ASA J. Uncertain. Quantif. 2 (2014) 364–396. | MR | Zbl | DOI

[11] A. Cohen and R. Devore, Approximation of high dimensional parametric PDEs. Acta Numerica 24 (2015) 1–159. | MR | DOI

[12] A. Cotter, O. Shamir, N. Srebro and K. Sridharan, Better mini-batch algorithms via accelerated gradient methods, edited by J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira and K. Q. Weinberger, In: Advances in Neural Information Processing Systems 24, Curran Associates, Inc. (2011) 1647–1655.

[13] J. C. De Los Reyes, Numerical PDE-Constrained optimization, SpringerBriefs in Optimization. Springer, Cham (2015). | MR | Zbl

[14] A. Défossez and F. Bach, Averaged least-mean-squares: Bias-variance trade-offs and optimal sampling distributions. Artificial Intelligence and Statistics 38 (2015) 205–213.

[15] O. Dekel, R. Gilad-Bachrach, O. Shamir and L. Xiao, Optimal distributed online prediction using mini-batches. J. Mach. Learn. Res. 13 (2012) 165–202. | MR | Zbl

[16] A. Dieuleveut and F. Bach, Nonparametric stochastic approximation with large step-sizes. The Ann. Stat. 44 (2016) 1363–1399. | MR | DOI

[17] J. Duchi and Y. Singer, Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res. 10 (2009) 2899–2934. | MR | Zbl

[18] L. C. Evans, Partial differential equations, Graduate studies in mathematics. Am. Math. Soc. (1998). | MR | Zbl

[19] N. Flammarion and F. Bach, From averaging to acceleration, there is only a step-size. Conference on Learning Theory (2015) 658–695.

[20] C. Geiersbach, W. Wollner, A stochastic gradient method with mesh refinement for PDE constrained optimization under uncertainty. SIAM J. Sci. Comput. 42 (2020) A2750–A2772. | MR | DOI

[21] P. Grisvard, Elliptic problems in nonsmooth domains, Reprint of the 1985 original [MR0775683], With a foreword by Susanne C. Brenner. Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM). Philadelphia, PA, 69 (2011). | MR | Zbl

[22] M. D. Gunzburger, H.-C. Lee and J. Lee, Error estimates of stochastic optimal Neumann boundary control problems. SIAM J. Numer. Anal. 49 (2011) 1532–1552. | MR | Zbl | DOI

[23] M. D. Gunzburger, C. G. Webster and G. Zhang, Stochastic finite element methods for partial differential equations with random input data. Acta Numerica 23 (2014) 521–650. | MR | DOI

[24] P. A. Guth, V. Kaarnioja, F. Y. Kuo, C. Schillings and I. H. Sloan, A quasi-Monte Carlo method for optimal control under uncertainty. SIAM-ASA J. Uncertain. Quantif. 9 (2021) 354–383. | MR | DOI

[25] S. B. Hazra, Large-scale PDE-constrained optimization in applications. Springer-Verlag, Berlin (2010). | MR | Zbl | DOI

[26] F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012) 251–265. | MR | Zbl | DOI

[27] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications 23. Springer, New York (2009). | MR | Zbl

[28] D. P. Kouri, An Approach for the Adaptive Solution of Optimization Problems Governed by Partial Differential Equations with Uncertain Coefficients, ProQuest LLC, Ann Arbor, MI, Ph.D. thesis. Rice University (2012). | MR

[29] D. P. Kouri, M. Heinkenschloss, D. Ridzal and B. G. Van Bloemen Waanders, A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty. SIAM J. Sci. Comput. 35 (2013) A1847–A1879. | MR | Zbl | DOI

[30] D. P. Kouri and T. M. Surowiec, Risk-averse PDE-constrained optimization using the conditional value-at-risk. SIAM J. Optim. 26 (2016) 365–396. | MR | DOI

[31] D. P. Kouri and T. M. Surowiec, Existence and optimality conditions for risk-averse PDE-constrained optimization. SIAM/ASA J. Uncertain. Quantif. 6 (2018) 787–815. | MR | DOI

[32] A. Kunoth and C. Schwab, Analytic regularity and GPC approximation for control problems constrained by linear parametric elliptic and parabolic PDEs. SIAM J. Control Optim. 51 (2013) 2442–2471. | MR | Zbl | DOI

[33] H. J. Kushner and G. G. Yin, Stochastic approximation algorithms and applications, Applications of Mathematics (New York). Springer-Verlag, New York (1997). | MR | Zbl | DOI

[34] G. Leugering, P. Benner, S. Engell, A. Griewank, H. Harbrecht, M. Hinze, R. Rannacher and S. Ulbrich (eds.), Trends in PDE constrained optimization. Birkhäuser/Springer, Cham (2014). | MR | Zbl | DOI

[35] G. J. Lord, C. E. Powell and T. Shardlow, An introduction to computational stochastic PDEs, Cambridge Texts in Applied Mathematics. Cambridge University Press (2014). | MR | Zbl

[36] M. Martin, Stochastic approximation methods for PDE constrained optimal control problems with uncertain parameters, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Thesis 7233 (2019).

[37] M. Martin, F. Nobile, PDE-Constrained Optimal Control Problems with Uncertain Parameters using SAGA. SIAM-ASA J. Uncertain. Quantif. 9 (2021) 979–1012. | MR | DOI

[38] M. Martin, F. Nobile and P. Tsilifis, A multilevel stochastic gradient method for PDE-constrained optimal control problems with uncertain parameters. Preprint arXiv: 1912.11900 (2019).

[39] A. Nemirovski, A. Juditsky, G. Lan and A. Shapiro, Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19 (2009) 1574–1609. | MR | Zbl | DOI

[40] B. T. Polyak and A. B. Juditsky, Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 30 (1992) 838–855. | MR | Zbl | DOI

[41] H. Robbins and S. Monro, A stochastic approximation method. Ann. Math. Statist. 22 (1951) 400–407. | MR | Zbl | DOI

[42] R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions. J. Bank. Financ. 26 (2002) 1443–1471. | DOI

[43] E. Rosseel and G. N. Wells, Optimal control with stochastic PDE constraints and uncertain controls. Comput. Methods Appl. Mech. Engrg. 213/216 (2012) 152–167. | MR | Zbl | DOI

[44] D. Ruppert, Efficient estimations from a slowly convergent Robbins-Monro process. Tech. Report Cornell Uni. Oper. Res. Ind. Eng. (1988).

[45] C. Schillings, S. Schmidt and V. Schulz, Efficient shape optimization for certain and uncertain aerodynamic design. Computers & Fluids. 10th ICFD Conference Series on Numerical Methods for Fluid Dynamics (ICFD 2010) 46 (2011) 78–87. | MR | Zbl

[46] M. Schmidt, N. Le Roux and F. Bach, Minimizing finite sums with the stochastic average gradient. Math. Program. 162 (2017) 83–112. | MR | DOI

[47] A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on stochastic programming, 2nd ed., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, Modeling and theory (2014). | MR | Zbl

[48] H. Tiesler, R. M. Kirby, D. Xiu and T. Preusser, Stochastic collocation for optimal control problems with stochastic PDE constraints. SIAM J. Control Optim. 50 (2012) 2659–2682. | MR | Zbl | DOI

[49] A. Van Barel and S. Vandewalle, Robust optimization of PDEs with random coefficients using a multilevel Monte Carlo method. SIAM/ASA J. Uncertain. Quantif. 7 (2019) 174–202. | MR | DOI

[50] D. Williams, Probability with martingales. Cambridge mathematical textbooks. Cambridge University Press (1991). | MR | Zbl

Cité par Sources :