A priori error estimates for the space-time finite element approximation of a quasilinear gradient enhanced damage model
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1347-1374

In this paper we investigate a priori error estimates for the space-time Galerkin finite element discretization of a quasilinear gradient enhanced damage model. The model equations are of a special structure as the state equation consists of two quasilinear elliptic PDEs which have to be fulfilled at almost all times coupled with a nonsmooth, semilinear ODE that has to hold true in almost all points in space. The system is discretized by a constant discontinuous Galerkin method in time and usual conforming linear finite elements in space. Numerical experiments are added to illustrate the proven rates of convergence.

DOI : 10.1051/m2an/2021021
Classification : 65J08, 65M12, 65M15, 65M60
Keywords: Error estimates, finite elements, quasilinear coupled PDE-ODE system, damage material model
@article{M2AN_2021__55_4_1347_0,
     author = {Holtmannsp\"otter, Marita},
     title = {\protect\emph{A priori} error estimates for the space-time finite element approximation of a quasilinear gradient enhanced damage model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1347--1374},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/m2an/2021021},
     mrnumber = {4281737},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021021/}
}
TY  - JOUR
AU  - Holtmannspötter, Marita
TI  - A priori error estimates for the space-time finite element approximation of a quasilinear gradient enhanced damage model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1347
EP  - 1374
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021021/
DO  - 10.1051/m2an/2021021
LA  - en
ID  - M2AN_2021__55_4_1347_0
ER  - 
%0 Journal Article
%A Holtmannspötter, Marita
%T A priori error estimates for the space-time finite element approximation of a quasilinear gradient enhanced damage model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1347-1374
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021021/
%R 10.1051/m2an/2021021
%G en
%F M2AN_2021__55_4_1347_0
Holtmannspötter, Marita. A priori error estimates for the space-time finite element approximation of a quasilinear gradient enhanced damage model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1347-1374. doi: 10.1051/m2an/2021021

[1] B. Bourdin, G. A. Francfort and J. J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797–826. | MR | Zbl | DOI

[2] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods. Springer Verlag (2002). | MR | Zbl | DOI

[3] S. Burke, C. Ortner and E. Süli, An adaptive finite element approximation of a generalized Ambrosio-Tortorelli functional. Math. Models Methods Appl. Sci. 23 (2013) 1663–1697. | MR | Zbl | DOI

[4] G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal. 176 (2005) 165–225. | MR | Zbl | DOI

[5] B. J. Dimitrijevic and K. Hackl, A method for gradient enhancement of continuum damage models. Technische Mechanik, Ruhr-Universität Bochum 28 (2008) 43–52.

[6] B. J. Dimitrijevic and K. Hackl, A regularization framework for damage-plasticity models via gradient enhancement of the free energy. Int. J. Numer. Methods Biomed. Eng. 27 (2011) 1199–1210. | MR | Zbl | DOI

[7] M. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13 (2006) 151–167. | MR | Zbl

[8] E. Emmrich, Gewöhnliche und Operatordifferentialgleichungen. Vieweg, Berlin (2004).

[9] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28 (1991) 43–77. | MR | Zbl | DOI

[10] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems II: optimal error estimates in L L 2 and L L . SIAM J. Numer. Anal. 32 (1995) 706–740. | MR | Zbl | DOI

[11] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems IV: Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729–1749. | MR | Zbl | DOI

[12] K. Eriksson, C. Johnson and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method. Rairo M.M.a.N 19 (1985) 611–643. | MR | Zbl | Numdam

[13] D. Estep and S. Larsson, The discontinuous Galerkin method for semilinear parabolic problems. ESAIM: M2AN 27 (1993) 35–54. | MR | Zbl | Numdam | DOI

[14] G. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. | MR | Zbl | DOI

[15] G. A. Francfort and C. J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture. Comm. Pure Appl. Math. 56 (2003) 1465–1500. | MR | Zbl | DOI

[16] A. A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. (1921).

[17] K. Gröger, A W 1 , p -estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283 (1989) 679–687. | MR | Zbl | DOI

[18] R. Haller-Dintelmann, H. Meinlschmidt and W. Wollner, Higher regularity for solutions to elliptic systems in divergence form subject to mixed boundary conditions. Annali di Matematica Pura ed Applicata (2018). | MR

[19] M. Holtmannspötter and A. Rösch, A priori error estimates for the space-time finite element approximation of a non-smooth optimal control problem governed by a coupled semilinear PDE-ODE system. Preprint; arXiv: 2004.05837 (2020). | MR

[20] M. Holtmannspötter, A. Rösch and B. Vexler, A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Preprint; arXiv:2004.04448 (2019). | MR

[21] P. Junker, S. Schwarz, D. Jantos and K. Hackl, A fast and robust numerical treatment of a gradient-enhanced model for brittle damage. Int. J. Multiscale Comput. Eng. 17 (2019) 151–180. | DOI

[22] D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model. Math. Models and Methods Appl. Sci. 23 (2013) 565–616. | MR | Zbl | DOI

[23] J. Makowski, K. Hackl and H. Stumpf, The fundamental role on nonlocal and local balance laws of material forces in finite elastoplasticity and damage mechanics. Int. J. Solids Struct (2006). | Zbl

[24] D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems part I: Problems without control constraints. SIAM J. Control Optim. 47 (2008) 1150–1177. | MR | Zbl | DOI

[25] C. Meyer and L. Susu, Analysis of a viscous two-field gradient damage model, part I: Existence and uniqueness. ZAA 38 (2019) 249–286. | MR

[26] C. Meyer and L. Susu, Analysis of a viscous two-field gradient damage model, part II: Penalization limit. ZAA 38 (2019) 439–474. | MR

[27] M. Mohammadi and W. Wollner, A priori error estimates for a linearized fracture control problem (2018). DOI: 10.1007/s11081-020-09574-z.

[28] B. Nedjar, Elastoplastic-damage modelling including the gradient of damage: formulation and computational aspects. Int. J. Solids Struct. 38 (2001) 5421–5451. | Zbl | DOI

[29] I. Neitzel and B. Vexler, A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numerische Mathematik 120 (2011) 345–386. | MR | Zbl | DOI

[30] R. Peerlings, Enhanced damage modeling for fracture and fatigue. Ph.D. thesis, Technische Universiteit Eindhoven (1999).

[31] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter (1996). | MR | Zbl | DOI

[32] L. M. Susu, Analysis and optimal control of a damage model with penalty. Ph.D. thesis, Technische Universität Dortmund (2017).

[33] L. M. Susu, Optimal control of a viscous two-field gradient damage model. GAMM-Mitteilungen 2018 40 (2018) 287–311. | MR | DOI

Cité par Sources :