Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic PDEs with lognormal inputs
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 1163-1198

By combining a certain approximation property in the spatial domain, and weighted 𝓁2-summability of the Hermite polynomial expansion coefficients in the parametric domain obtained in Bachmayr et al. [ESAIM: M2AN 51 (2017) 341–363] and Bachmayr et al. [SIAM J. Numer. Anal. 55 (2017) 2151–2186], we investigate linear non-adaptive methods of fully discrete polynomial interpolation approximation as well as fully discrete weighted quadrature methods of integration for parametric and stochastic elliptic PDEs with lognormal inputs. We construct such methods and prove convergence rates of the approximations by them. The linear non-adaptive methods of fully discrete polynomial interpolation approximation are sparse-grid collocation methods which are certain sums taken over finite nested Smolyak-type indices sets of mixed tensor products of dyadic scale successive differences of spatial approximations of particular solvers, and of successive differences of their parametric Lagrange interpolating polynomials. The Smolyak-type sparse interpolation grids in the parametric domain are constructed from the roots of Hermite polynomials or their improved modifications. Moreover, they generate in a natural way fully discrete weighted quadrature formulas for integration of the solution to parametric and stochastic elliptic PDEs and its linear functionals, and the error of the corresponding integration can be estimated via the error in the Bochner space L1 (, V, γ) norm of the generating methods where γ is the Gaussian probability measure on ℝ and V is the energy space. We also briefly consider similar problems for parametric and stochastic elliptic PDEs with affine inputs, and problems of non-fully discrete polynomial interpolation approximation and integration. In particular, the convergence rates of non-fully discrete polynomial interpolation approximation and integration obtained in this paper significantly improve the known ones.

DOI : 10.1051/m2an/2021017
Classification : 65C30, 65D05, 65D32, 65N15, 65N30, 65N35
Keywords: High-dimensional approximation, parametric and stochastic elliptic PDEs, lognormal inputs, collocation approximation, fully discrete non-adaptive polynomial interpolation approximation, fully discrete non-adaptive integration
@article{M2AN_2021__55_3_1163_0,
     author = {D\~{u}ng, Dinh},
     title = {Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic {PDEs} with lognormal inputs},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1163--1198},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/m2an/2021017},
     mrnumber = {4269463},
     zbl = {07405595},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021017/}
}
TY  - JOUR
AU  - Dũng, Dinh
TI  - Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic PDEs with lognormal inputs
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1163
EP  - 1198
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021017/
DO  - 10.1051/m2an/2021017
LA  - en
ID  - M2AN_2021__55_3_1163_0
ER  - 
%0 Journal Article
%A Dũng, Dinh
%T Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic PDEs with lognormal inputs
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1163-1198
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021017/
%R 10.1051/m2an/2021017
%G en
%F M2AN_2021__55_3_1163_0
Dũng, Dinh. Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic PDEs with lognormal inputs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 1163-1198. doi: 10.1051/m2an/2021017

[1] M. Bachmayr, A. Cohen, D. Dũng and C. Schwab, Fully discrete approximation of parametric and stochastic elliptic PDEs. SIAM J. Numer. Anal. 55 (2017) 2151–2186. | MR | Zbl | DOI

[2] M. Bachmayr, A. Cohen and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients. ESAIM: M2AN 51 (2017) 321–339. | MR | Zbl | Numdam | DOI

[3] M. Bachmayr, A. Cohen, R. Devore and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients. ESAIM: M2AN 51 (2017) 341–363. | MR | Zbl | Numdam | DOI

[4] P. Chen, Sparse quadrature for high-dimensional integration with Gaussian measure. ESAIM: M2AN 52 (2018) 631–657. | MR | Zbl | Numdam | DOI

[5] A. Chkifa, A. Cohen, R. Devore and C. Schwab, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. ESAIM: M2AN 47 (2013) 253–280. | MR | Zbl | Numdam | DOI

[6] A. Chkifa, A. Cohen and C. Schwab, High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found. Comput. Math. 14 (2014) 601–633. | MR | Zbl | DOI

[7] A. Chkifa, A. Cohen and C. Schwab. Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. Pures Appl. 103 (2015) 400–428. | MR | Zbl | DOI

[8] P. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland Publ. (1978). | MR | Zbl

[9] A. Cohen and R. Devore, Approximation of high-dimensional parametric PDEs. Acta Numer. 24 (2015) 1–159. | MR | Zbl | DOI

[10] A. Cohen, R. Devore and C. Schwab, Convergence rates of best N -term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10 (2010) 615–646. | MR | Zbl | DOI

[11] A. Cohen, R. Devore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic PDEs. Anal. Appl. 9 (2011) 11–47. | MR | Zbl | DOI

[12] J. Dick, F. Kuo and I. Sloan, High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22 (2013) 133–288. | MR | Zbl | DOI

[13] J. Dick, C. Irrgeher, G. Leobacher and F. Pillichshammer, On the optimal order of integration in Hermite spaces with finite smoothness. SIAM J. Numer. Anal. 56 (2018) 684–707. | MR | Zbl | DOI

[14] D. Dũng, Linear collective collocation and Galerkin approximations for parametric and stochastic elliptic PDEs. Preprint arXiv:1511.03377v5 [math.NA] (2015). | Zbl | MR

[15] D. Dũng, Galerkin approximation for parametric and stochastic elliptic PDEs. Bull. L.N. Gumilyov Eurasian Nat. Univ. Math. Comput. Sci. Mech. Ser. 1 (2018) 76–89.

[16] D. Dũng, Linear collocation approximation for parametric and stochastic elliptic PDEs. Sb. Math. 210 (2019) 103–227. | Zbl | MR | DOI

[17] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. II. McGraw-Hill (1955). | Zbl

[18] O. Ernst, B. Sprungk and L. Tamellini, Convergence of sparse collocation for functions of countably many Gaussian random variables – with application to lognormal elliptic diffusion problems. SIAM J. Numer. Anal. 56 (2018) 887–905. | MR | Zbl | DOI

[19] P. Grisvard, Elliptic Problems in Nonsmooth Domains. In: Vol. 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston (1985). | MR | Zbl

[20] M. Gunzburger, C. Webster and G. Zang, Stochastic finite element methods for partial diferential equations with random input data. Acta Numer. 23 (2014) 521–650. | MR | Zbl | DOI

[21] A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. Tempone, Multi-index stochastic collocation convergence rates for random PDEs with parametric regularity. Found. Comput. Math. 16 (2016) 1555–1605. | MR | Zbl | DOI

[22] A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. Tempone, Multi-index stochastic collocation for random PDEs. Comput. Methods Appl. Mech. Eng. 306 (2016) 95–122. | MR | Zbl | DOI

[23] E. Hewitt and K. Stromberg, Real and Abstract Analysis. Springer (1965). | Zbl | MR

[24] V. H. Hoang and C. Schwab, N -term Wiener chaos approximation rate for elliptic PDEs with lognormal Gaussian random inputs. Math. Models Methods Appl. Sci. 24 (2014) 796–826. | MR | Zbl | DOI

[25] D. S. Lubinsky, A survey of weighted polynomial approximation with exponential weights. Surv. Approx. Theory 3 (2007) 1–105. | MR | Zbl

[26] D. M. Matjila, Bounds for the weighted Lebesgue functions for Freud weights. J. Approx. Theory 79 (1994) 385–406. | MR | Zbl | DOI

[27] D. M. Matjila, Convergence of Lagrange interpolation for Freud weights in weighted L p ( 𝐑 ) , 0 < p 1 . In: Nonlinear Numerical Methods and Rational Approximation. Kluwer, Dordrecht (1994) 25–35. | MR | Zbl | DOI

[28] F. Nobile, R. Tempone and C. G. Webster, An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 2411–2442. | MR | Zbl | DOI

[29] C. Schwab and C. Gittelson, Sparse tensor discretizations high-dimensional parametric and stochastic PDEs. Acta Numer. 20 (2011) 291–467. | MR | Zbl | DOI

[30] J. Szabados, Weighted Lagrange and Hermite-Fejér interpolation on the real line. J. Inequal. Appl. 1 (1997) 99–123. | MR | Zbl

[31] G. Szegö, Orthogonal Polynomials. In: Vol. 23 of American Mathematical Society Colloquium. American Mathematical Society, Providence, RI (1939). | MR | Zbl

[32] J. Zech, Sparse-grid approximation of high-dimensional parametric PDEs, Dissertation 25683, ETH Zurich (2018).

[33] J. Zech and C. Schwab, Convergence rates of high dimensional Smolyak quadrature. ESAIM: M2AN 54 (2020) 1259–1307. | MR | Zbl | Numdam | DOI

[34] J. Zech, D. Dũng and C. Schwab, Multilevel approximation of parametric and stochastic PDEs. Math. Models Methods Appl. Sci. 29 (2019) 1753–1817. | MR | Zbl | DOI

Cité par Sources :