Stable approximations for axisymmetric Willmore flow for closed and open surfaces
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 833-885

For a hypersurface in ℝ3, Willmore flow is defined as the L2-gradient flow of the classical Willmore energy: the integral of the squared mean curvature. This geometric evolution law is of interest in differential geometry, image reconstruction and mathematical biology. In this paper, we propose novel numerical approximations for the Willmore flow of axisymmetric hypersurfaces. For the semidiscrete continuous-in-time variants we prove a stability result. We consider both closed surfaces, and surfaces with a boundary. In the latter case, we carefully derive weak formulations of suitable boundary conditions. Furthermore, we consider many generalizations of the classical Willmore energy, particularly those that play a role in the study of biomembranes. In the generalized models we include spontaneous curvature and area difference elasticity (ADE) effects, Gaussian curvature and line energy contributions. Several numerical experiments demonstrate the efficiency and robustness of our developed numerical methods.

DOI : 10.1051/m2an/2021014
Classification : 65M60, 65M12, 35K55, 53C44
Keywords: Willmore flow, Helfrich flow, axisymmetry, parametric finite elements, stability, tangential movement, spontaneous curvature, ADE model, clamped boundary conditions, Navier boundary conditions, Gaussian curvature energy, line energy
@article{M2AN_2021__55_3_833_0,
     author = {Barrett, John W. and Garcke, Harald and N\"urnberg, Robert},
     title = {Stable approximations for axisymmetric {Willmore} flow for closed and open surfaces},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {833--885},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/m2an/2021014},
     mrnumber = {4253162},
     zbl = {1500.65058},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021014/}
}
TY  - JOUR
AU  - Barrett, John W.
AU  - Garcke, Harald
AU  - Nürnberg, Robert
TI  - Stable approximations for axisymmetric Willmore flow for closed and open surfaces
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 833
EP  - 885
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021014/
DO  - 10.1051/m2an/2021014
LA  - en
ID  - M2AN_2021__55_3_833_0
ER  - 
%0 Journal Article
%A Barrett, John W.
%A Garcke, Harald
%A Nürnberg, Robert
%T Stable approximations for axisymmetric Willmore flow for closed and open surfaces
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 833-885
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021014/
%R 10.1051/m2an/2021014
%G en
%F M2AN_2021__55_3_833_0
Barrett, John W.; Garcke, Harald; Nürnberg, Robert. Stable approximations for axisymmetric Willmore flow for closed and open surfaces. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 833-885. doi: 10.1051/m2an/2021014

[1] J. W. Barrett, H. Garcke and R. Nürnberg, A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222 (2007) 441–462. | MR | Zbl | DOI

[2] J. W. Barrett, H. Garcke and R. Nürnberg, Parametric approximation of Willmore flow and related geometric evolution equations. SIAM J. Sci. Comput. 31 (2008) 225–253. | MR | Zbl | DOI

[3] J. W. Barrett, H. Garcke and R. Nürnberg, Elastic flow with junctions: Variational approximation and applications to nonlinear splines. Math. Models Methods Appl. Sci. 22 (2012) 1250037. | MR | Zbl | DOI

[4] J. W. Barrett, H. Garcke and R. Nürnberg, Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves. Numer. Math. 120 (2012) 489–542. | MR | Zbl | DOI

[5] J. W. Barrett, H. Garcke and R. Nürnberg, Computational parametric Willmore flow with spontaneous curvature and area difference elasticity effects. SIAM J. Numer. Anal. 54 (2016) 1732–1762. | MR | Zbl | DOI

[6] J. W. Barrett, H. Garcke and R. Nürnberg, Stable variational approximations of boundary value problems for Willmore flow with Gaussian curvature. IMA J. Numer. Anal. 37 (2017) 1657–1709. | MR | Zbl

[7] J. W. Barrett, H. Garcke and R. Nürnberg, Finite element methods for fourth order axisymmetric geometric evolution equations. J. Comput. Phys. 376 (2019) 733–766. | MR | Zbl | DOI

[8] J.W. Barrett, H. Garcke and R. Nürnberg, Stable discretizations of elastic flow in Riemannian manifolds. SIAM J. Numer. Anal. 57 (2019) 1987–2018. | MR | Zbl | DOI

[9] J. W. Barrett, H. Garcke and R. Nürnberg, Variational discretization of axisymmetric curvature flows. Numer. Math. 141 (2019) 791–837. | MR | Zbl | DOI

[10] J. W. Barrett, H. Garcke and R. Nürnberg, Numerical approximation of curve evolutions in Riemannian manifolds. IMA J. Numer. Anal. 40 (2020) 1601–1651. | MR | Zbl | DOI

[11] J. W. Barrett, H. Garcke and R. Nürnberg, Parametric finite element approximations of curvature driven interface evolutions, edited by A. Bonito and R. H. Nochetto. In: Vol. 21 of Handb. Numer. Anal.. Elsevier, Amsterdam (2020) 275–423. | MR | Zbl

[12] A. I. Bobenko and P. Schröder, Discrete Willmore flow, edited by J. Fujii In: ACM SIGGRAPH 2005 Courses. ACM, New York, NY, SIGGRAPH ‘05, 5–es.

[13] P. B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26 (1970) 61–81. | DOI

[14] R. Capovilla, J. Guven and J. A. Santiago, Lipid membranes with an edge. Phys. Rev. E 66 (2002) 021607. | DOI

[15] U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf and R. Rusu, A finite element method for surface restoration with smooth boundary conditions. Comput. Aided Geom. Design 21 (2004) 427–445. | MR | Zbl | DOI

[16] G. Cox and J. Lowengrub, The effect of spontaneous curvature on a two-phase vesicle. Nonlinearity 28 (2015) 773–793. | MR | Zbl | DOI

[17] A. Dallacqua, M. Müller, R. Schätzle and A. Spener, The Willmore flow of tori of revolution. Preprint (2020). | arXiv

[18] T. A. Davis, Algorithm 832: UMFPACK V4.3 – an unsymmetric-pattern multifrontal method. ACM Trans. Math. Software 30 (2004) 196–199. | MR | Zbl | DOI

[19] K. Deckelnick and G. Dziuk, Error analysis for the elastic flow of parametrized curves. Math. Comput. 78 (2009) 645–671. | MR | Zbl | DOI

[20] K. Deckelnick and F. Schieweck, Error analysis for the approximation of axisymmetric Willmore flow by C 1 -finite elements. Interfaces Free Bound. 12 (2010) 551–574. | MR | Zbl | DOI

[21] G. Dziuk, Computational parametric Willmore flow. Numer. Math. 111 (2008) 55–80. | MR | Zbl | DOI

[22] S. Germain, Recherches sur la théorie des surfaces élastiques. Veuve Courcier, Paris (1821).

[23] W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch C 28 (1973) 693–703. | DOI

[24] F. Jülicher and R. Lipowsky, Shape transformations of vesicles with intramembrane domains. Phys. Rev. E 53 (1996) 2670–2683. | DOI

[25] F. Jülicher and U. Seifert, Shape equations for axisymmetric vesicles: A clarification. Phys. Rev. E 49 (1994) 4728–4731. | DOI

[26] G. R. Kirchhoff, Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. 40 (1850) 51–88. | MR | Zbl

[27] W. Kühnel, In: Vol. 77 of Differential geometry: Curves – Surfaces – Manifolds. Student Mathematical Library. Amer. Math. Soc. Providence, RI (2015). | MR | Zbl | DOI

[28] F. C. Marques and A. Neves, Min-max theory and the Willmore conjecture. Ann. Math. 179 (2014) 683–782. | MR | Zbl | DOI

[29] U. F. Mayer and G. Simonett, A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow. Interfaces Free Bound. 4 (2002) 89–109. | MR | Zbl | DOI

[30] J. C. C. Nitsche, Boundary value problems for variational integrals involving surface curvatures. Quart. Appl. Math. 51 (1993) 363–387. | MR | Zbl | DOI

[31] S. D. Poisson, Mémoire sur les surfaces élastiques, Mémoires de l’Institut 1812 9 (1814) 167–226.

[32] R. E. Rusu, An algorithm for the elastic flow of surfaces. Interfaces Free Bound. 7 (2005) 229–239. | MR | Zbl | DOI

[33] U. Seifert, Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1997) 13–137. | DOI

[34] Z. C. Tu and Z. C. Ou-Yang, Lipid membranes with free edges. Phys. Rev. E 68 (2003) 061915. | DOI

[35] X. Wang and Q. Du, Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56 (2008) 347–371. | MR | Zbl | DOI

[36] T. J. Willmore, Riemannian Geometry. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1993). | MR | Zbl | DOI

Cité par Sources :

John died on 30 June 2019, when this manuscript was nearly completed. We dedicate this article to his memory.