An efficient variable step-size method for options pricing under jump-diffusion models with nonsmooth payoff function
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 913-938

We develop an implicit–explicit midpoint formula with variable spatial step-sizes and variable time step to solve parabolic partial integro-differential equations with nonsmooth payoff function, which describe the jump-diffusion option pricing model in finance. With spatial differential operators being treated by using finite difference methods and the jump integral being computed by using the composite trapezoidal rule on a non-uniform space grid, the proposed method leads to linear systems with tridiagonal coefficient matrices, which can be solved efficiently. Under realistic regularity assumptions on the data, the consistency error and the global error bounds for the proposed method are obtained. The stability of this numerical method is also proved by using the Von Neumann analysis. Numerical results illustrate the effectiveness of the proposed method for European options under jump-diffusion models.

DOI : 10.1051/m2an/2021012
Classification : 65M06, 65M55, 65L60, 91B25, 91G60, 65J10
Keywords: Partial integro-differential equations, implicit–explicit midpoint formula, options pricing, jump-diffusion model, finite difference method, stability, error estimates
@article{M2AN_2021__55_3_913_0,
     author = {Wang, Wansheng and Mao, Mengli and Wang, Zheng},
     title = {An efficient variable step-size method for options pricing under jump-diffusion models with nonsmooth payoff function},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {913--938},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/m2an/2021012},
     mrnumber = {4253168},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021012/}
}
TY  - JOUR
AU  - Wang, Wansheng
AU  - Mao, Mengli
AU  - Wang, Zheng
TI  - An efficient variable step-size method for options pricing under jump-diffusion models with nonsmooth payoff function
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 913
EP  - 938
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021012/
DO  - 10.1051/m2an/2021012
LA  - en
ID  - M2AN_2021__55_3_913_0
ER  - 
%0 Journal Article
%A Wang, Wansheng
%A Mao, Mengli
%A Wang, Zheng
%T An efficient variable step-size method for options pricing under jump-diffusion models with nonsmooth payoff function
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 913-938
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021012/
%R 10.1051/m2an/2021012
%G en
%F M2AN_2021__55_3_913_0
Wang, Wansheng; Mao, Mengli; Wang, Zheng. An efficient variable step-size method for options pricing under jump-diffusion models with nonsmooth payoff function. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 913-938. doi: 10.1051/m2an/2021012

[1] Y. Achdou and O. Pironneau, Computational Methods for Option Pricing. In: Vol. 30 of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA (2005). | MR | Zbl

[2] G. Akrivis, M. Crouzeix and C. Makridadis, Implicit–explicit multistep finite element methods for nonlinear parabolic equations, Report 95-22, University of Rennes (1995). | MR

[3] A. Almendral and C. W. Oosterlee, Numerical valuation of options with jumps in the underlying. Appl. Numer. Math. 53 (2005) 1–18. | MR | Zbl | DOI

[4] L. Andersen and J. Andreasen, Jump-diffusion processes: volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4 (2000) 231–262. | Zbl | DOI

[5] U. M. Ascher, S. J. Ruuth and B. T. R. Wetton, Implicit–explicit methods for time-dependent PDE’s. SIAM J. Numer. Anal. 32 (1995) 797–823. | MR | Zbl | DOI

[6] U. M. Ascher, S. J. Ruuth and R. J. Spiteri, Implicit–explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25 (1997) 151–167. | MR | Zbl | DOI

[7] J. Becker, A second order backward difference method with variable steps for a parabolic problem. BIT 38 (1998) 644–662. | MR | Zbl | DOI

[8] L. Boen and K. J. In ‘T Hout, Operator splitting schemes for American options under the two-asset Merton jump-diffusion model. Preprint (2019). | arXiv | MR

[9] L. Boen, K. J. In ‘T Hout, Operator splitting schemes for the two-asset Merton jump-diffusion model. J. Comput. Appl. Math. 387 (2021) 112309. | MR | DOI

[10] M. Briani, R. Natalini, G. Russo, Implicit–explicit numerical schemes for jump-diffusion processes, Calcolo 44 (2007) 33–57. | MR | Zbl | DOI

[11] W. Chen, X. Wang, Y. Yan and Z. Zhang, A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation., SIAM J. Numer. Anal. 57 (2019) 495–525. | MR | DOI

[12] Y. Z. Chen, W. S. Wang and A. G. Xiao, An efficient algorithm for options under Merton’s jump-diffusion model on nonuniform grids. Comput. Econ. 48 (2018) 1–27.

[13] Y. Z. Chen, A. G. Xiao and W. S. Wang, An IMEX-BDF2 compact scheme for pricing options under regime-switching jump-diffusion models. Math. Methods Appl. Sci. 42 (2019) 2646–2663. | MR | DOI

[14] C. C. Christara and N. C. Leung, Analysis of quantization error in financial pricing via finite difference methods. SIAM J. Numer. Anal. 56 (2018) 1731–1757. | MR | DOI

[15] R. Cont and P. Tankov, Financial Modelling with Jump Processes. Chapman & Hall/CRC, Boca Raton, FL (2004). | MR | Zbl

[16] R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential lévy models. SIAM J. Numer. Anal. 43 (2005) 1596–1624. | MR | Zbl | DOI

[17] M. Crouzeix, Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35 (1980) 257–276. | MR | Zbl | DOI

[18] Y. D’Halluin, P. A. Forsyth and G. Labahn, A penalty method for American options with jump diffusion processes. Numer. Math. 97 (2004) 321–352. | MR | Zbl | DOI

[19] Y. D’Halluin, P. A. Forsyth and K. R. Vetzal, Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25 (2005) 87–112. | MR | Zbl | DOI

[20] L. Feng and V. Linetsky, Pricing options in jump-diffusion models: an extrapolation approach. Oper. Res. 56 (2008) 304–325. | MR | Zbl | DOI

[21] P. A. Forsyth and K. R. Vetzal, Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23 (2002) 2095–2122. | MR | Zbl | DOI

[22] J. Frank, W. Hundsdorfer and J. G. Verwer, On the stability of implicit–explicit linear multistep methods. Appl. Numer. Math. 25 (1997) 193–205. | MR | Zbl | DOI

[23] B. Gaviraghi, M. Annunziato and A. Borzía, Analysis of splitting methods for solving a partial integro-differential Fokker-Planck equation. Appl. Math. Comput. 294 (2017) 1–17. | MR

[24] K. J. In ‘T Hout, Numerical Partial Differential Equations in Finance Explained: An Introduction to Computational Finance. Springer Nature, London (2017). | DOI

[25] K. J. In ‘T Hout and J. Toivanen, ADI schemes for valuing European options under the Bates model. Appl. Numer. Math. 130 (2018) 143–156. | MR | DOI

[26] K. J. In ‘T Hout and K. Volders, Stability and convergence analysis of discretizations of the Black-Scholes PDE with the linear boundary condition. IMA J. Numer. Anal. 34 (2014) 296–325. | MR | Zbl | DOI

[27] M. K. Kadalbajoo, L. P. Tripathi and A. Kumar, Second order accurate IMEX methods for option pricing under Merton and Kou jump-diffusion model. J. Sci. Comput. 65 (2015) 979–1024. | MR | DOI

[28] M. K. Kadalbajoo, A. Kumar and L. P. Tripathi, An efficient numerical method for pricing options under jump diffusion model. Int. J. Adv. Eng. Sci. Appl. Math. 7 (2015) 114–123. | MR | DOI

[29] M. K. Kadalbajoo, A. Kumar and L. P. Tripathi and A radial basis function based implicit–explicit method for option pricing under jump-diffusion models. Appl. Numer. Math. 110 (2016) 159–173. | MR | DOI

[30] M. K. Kadalbajoo, L. P. Tripathi and A. Kumar, An error analysis of a finite element method with IMEX-time semidiscretizations for some partial integro-differential inequalities arising in the pricing of American options. SIAM J. Numer. Anal. 55 (2017) 869–891. | MR | DOI

[31] S. G. Kou, A jump diffusion model for option pricing. Manage. Sci. 48 (2002) 1086–1101. | Zbl | DOI

[32] Y. Kwon and Y. Lee, A second-order finite difference method for option pricing under jump-diffusion models. SIAM J. Numer. Anal. 49 (2011) 2598–2617. | MR | Zbl | DOI

[33] Y. Kwon and Y. Lee, A second-order tridiagonal method for American options under jump-diffusion models. SIAM J. Sci. Comput. 33 (2011) 1860–1872. | MR | Zbl | DOI

[34] S. T. Lee and H. W. Sun, Fourth order compact scheme with local mesh refinement for option pricing in jump-diffusion model. Numer. Methods Part. Differ. Equ. 28 (2012) 1079–1098. | MR | DOI

[35] H. L. Liao, T. Tang and T. Zhou, On energy stable, maximum-principle preserving, second order BDF scheme with variable steps for the Allen-Cahn equation. SIAM J. Numer. Anal. 58 (2020) 2294–2314. | MR | DOI

[36] A. M. Matache, C. Schwab and T. P. Wihler, Fast numerial solution of parabolic integro-differential equations with applications in finance, IMA preprint series 1954, University of Minnesota (2004). | Zbl

[37] A. M. Matache, T. Von Petersdorff and C. Schwab, Fast deterministic pricing of options on Lévy driven assets. ESAIM: M2AN 38 (2004) 37–71. | MR | Zbl | Numdam | DOI

[38] R. C. Merton, Option pricing when underlying stock returns are discontinuous. J. Fin. Econ. 3 (1976) 125–144. | Zbl | DOI

[39] D. Nualart and W. Schoutens, Backward stochastic differential equations and Feynman-Kac formula for Lévy processes, with applications in finance. Bernoulli 7 (2001) 761–776. | MR | Zbl | DOI

[40] E. Pindza, K. C. Patidar and E. Ngounda, Robust spectral method for numerical valuation of European options under Merton’s jump-diffusion model. Numer. Methods Part. Differ. Equ. 30 (2014) 1169–1188. | MR | Zbl | DOI

[41] J. A. Rad and K. Parand, Pricing American options under jump-diffusion models using local weak form meshless techniques. Int. J. Comput. Math. 94 (2016) 1–27. | MR

[42] J. A. Rad and K. Parand, Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method. Appl. Numer. Math. 115 (2017) 252–274. | MR | DOI

[43] S. J. Ruuth, Implicit–explicit methods for reaction-diffusion problems in pattern-formation, J. Math. Biol. 34 (1995) 148–176. | MR | Zbl | DOI

[44] S. Salmi and J. Toivanen, An iterative method for pricing American options under jump-diffusion models. Appl. Numer. Math. 61 (2011) 821–831. | MR | Zbl | DOI

[45] S. Salmi and J. Toivanen, IMEX schemes for pricing options under jump-diffusion models. Appl. Numer. Math. 84 (2014) 33–45. | MR | Zbl | DOI

[46] S. Salmi, J. Tovianen and L. Von Sydow, An IMEX-scheme for pricing options under stochastic volatility models with jumps. SIAM J. Sci. Comput. 36 (2014) B817–B834. | MR | Zbl | DOI

[47] K. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge, UK (1999). | MR | Zbl

[48] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations. SIAM, Philadelphia (2004). | MR | Zbl

[49] D. Tavella and C. Randall, Pricing Financial Instruments: The Finite Difference Method. John Wiley & Sons, Chichester, UK (2000).

[50] J. Toivanen, Numerical valuation of European and American options under Kou’s jump-diffusion model. SIAM J. Sci. Comput. 4 (2008) 1949–1970. | MR | Zbl | DOI

[51] J. M. Varah, Stability restrictions on second order, three-level finite-difference schemes for parabolic equations. SIAM J. Numer. Anal. 17 (1980) 300–309. | MR | Zbl | DOI

[52] J. G. Verwer, J. G. Blom and W. Hundsdorfer, An implicit–explicit approach for atmospheric transport-chemistry problems. Appl. Numer. Math. 20 (1996) 191–209. | MR | Zbl | DOI

[53] W. S. Wang and Y. Z. Chen, Fast numerical valuation of options with jump under Merton’s model. J. Comput. Appl. Math. 318 (2017) 79–92. | MR | Zbl | DOI

[54] D. Wang and S. J. Ruuth, Variable step-size implicit–explicit linear multistep methods for time-dependent partial differential equations. J. Comput. Math. 26 (2008) 838–855. | MR | Zbl

[55] W. S. Wang, Y. Z. Chen and H. Fang, On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57 (2019) 1289–1317. | MR | Zbl | DOI

[56] W. S. Wang, M. L. Mao and Z. Wang, Stability and error estimates for the variable step-size BDF2 method for linear and semilinear parabolic equations. Adv. Comput. Math. 47 (2021) 1–28. | MR | Zbl

[57] X. L. Zhang, Numerical analysis of American option pricing in a jump-diffusion model. Math. Oper. Res. 22 (1997) 668–690. | MR | Zbl | DOI

[58] K. Zhang and S. Wang, A computational scheme for options under jump-diffusion processes. Int. J. Numer. Anal. Model. 6 (2009) 110–123. | MR | Zbl

Cité par Sources :