We develop an implicit–explicit midpoint formula with variable spatial step-sizes and variable time step to solve parabolic partial integro-differential equations with nonsmooth payoff function, which describe the jump-diffusion option pricing model in finance. With spatial differential operators being treated by using finite difference methods and the jump integral being computed by using the composite trapezoidal rule on a non-uniform space grid, the proposed method leads to linear systems with tridiagonal coefficient matrices, which can be solved efficiently. Under realistic regularity assumptions on the data, the consistency error and the global error bounds for the proposed method are obtained. The stability of this numerical method is also proved by using the Von Neumann analysis. Numerical results illustrate the effectiveness of the proposed method for European options under jump-diffusion models.
Keywords: Partial integro-differential equations, implicit–explicit midpoint formula, options pricing, jump-diffusion model, finite difference method, stability, error estimates
@article{M2AN_2021__55_3_913_0,
author = {Wang, Wansheng and Mao, Mengli and Wang, Zheng},
title = {An efficient variable step-size method for options pricing under jump-diffusion models with nonsmooth payoff function},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {913--938},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {3},
doi = {10.1051/m2an/2021012},
mrnumber = {4253168},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2021012/}
}
TY - JOUR AU - Wang, Wansheng AU - Mao, Mengli AU - Wang, Zheng TI - An efficient variable step-size method for options pricing under jump-diffusion models with nonsmooth payoff function JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - 913 EP - 938 VL - 55 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2021012/ DO - 10.1051/m2an/2021012 LA - en ID - M2AN_2021__55_3_913_0 ER -
%0 Journal Article %A Wang, Wansheng %A Mao, Mengli %A Wang, Zheng %T An efficient variable step-size method for options pricing under jump-diffusion models with nonsmooth payoff function %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P 913-938 %V 55 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2021012/ %R 10.1051/m2an/2021012 %G en %F M2AN_2021__55_3_913_0
Wang, Wansheng; Mao, Mengli; Wang, Zheng. An efficient variable step-size method for options pricing under jump-diffusion models with nonsmooth payoff function. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 913-938. doi: 10.1051/m2an/2021012
[1] and , Computational Methods for Option Pricing. In: Vol. 30 of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA (2005). | MR | Zbl
[2] , and , Implicit–explicit multistep finite element methods for nonlinear parabolic equations, Report 95-22, University of Rennes (1995). | MR
[3] and , Numerical valuation of options with jumps in the underlying. Appl. Numer. Math. 53 (2005) 1–18. | MR | Zbl | DOI
[4] and , Jump-diffusion processes: volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4 (2000) 231–262. | Zbl | DOI
[5] , and , Implicit–explicit methods for time-dependent PDE’s. SIAM J. Numer. Anal. 32 (1995) 797–823. | MR | Zbl | DOI
[6] , and , Implicit–explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25 (1997) 151–167. | MR | Zbl | DOI
[7] , A second order backward difference method with variable steps for a parabolic problem. BIT 38 (1998) 644–662. | MR | Zbl | DOI
[8] and , Operator splitting schemes for American options under the two-asset Merton jump-diffusion model. Preprint (2019). | arXiv | MR
[9] , , Operator splitting schemes for the two-asset Merton jump-diffusion model. J. Comput. Appl. Math. 387 (2021) 112309. | MR | DOI
[10] , , , Implicit–explicit numerical schemes for jump-diffusion processes, Calcolo 44 (2007) 33–57. | MR | Zbl | DOI
[11] , , and , A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation., SIAM J. Numer. Anal. 57 (2019) 495–525. | MR | DOI
[12] , and , An efficient algorithm for options under Merton’s jump-diffusion model on nonuniform grids. Comput. Econ. 48 (2018) 1–27.
[13] , and , An IMEX-BDF2 compact scheme for pricing options under regime-switching jump-diffusion models. Math. Methods Appl. Sci. 42 (2019) 2646–2663. | MR | DOI
[14] and , Analysis of quantization error in financial pricing via finite difference methods. SIAM J. Numer. Anal. 56 (2018) 1731–1757. | MR | DOI
[15] and , Financial Modelling with Jump Processes. Chapman & Hall/CRC, Boca Raton, FL (2004). | MR | Zbl
[16] and , A finite difference scheme for option pricing in jump diffusion and exponential lévy models. SIAM J. Numer. Anal. 43 (2005) 1596–1624. | MR | Zbl | DOI
[17] , Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35 (1980) 257–276. | MR | Zbl | DOI
[18] , and , A penalty method for American options with jump diffusion processes. Numer. Math. 97 (2004) 321–352. | MR | Zbl | DOI
[19] , and , Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25 (2005) 87–112. | MR | Zbl | DOI
[20] and , Pricing options in jump-diffusion models: an extrapolation approach. Oper. Res. 56 (2008) 304–325. | MR | Zbl | DOI
[21] and , Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23 (2002) 2095–2122. | MR | Zbl | DOI
[22] , and , On the stability of implicit–explicit linear multistep methods. Appl. Numer. Math. 25 (1997) 193–205. | MR | Zbl | DOI
[23] , and , Analysis of splitting methods for solving a partial integro-differential Fokker-Planck equation. Appl. Math. Comput. 294 (2017) 1–17. | MR
[24] , Numerical Partial Differential Equations in Finance Explained: An Introduction to Computational Finance. Springer Nature, London (2017). | DOI
[25] and , ADI schemes for valuing European options under the Bates model. Appl. Numer. Math. 130 (2018) 143–156. | MR | DOI
[26] and , Stability and convergence analysis of discretizations of the Black-Scholes PDE with the linear boundary condition. IMA J. Numer. Anal. 34 (2014) 296–325. | MR | Zbl | DOI
[27] , and , Second order accurate IMEX methods for option pricing under Merton and Kou jump-diffusion model. J. Sci. Comput. 65 (2015) 979–1024. | MR | DOI
[28] , and , An efficient numerical method for pricing options under jump diffusion model. Int. J. Adv. Eng. Sci. Appl. Math. 7 (2015) 114–123. | MR | DOI
[29] , and and A radial basis function based implicit–explicit method for option pricing under jump-diffusion models. Appl. Numer. Math. 110 (2016) 159–173. | MR | DOI
[30] , and , An error analysis of a finite element method with IMEX-time semidiscretizations for some partial integro-differential inequalities arising in the pricing of American options. SIAM J. Numer. Anal. 55 (2017) 869–891. | MR | DOI
[31] , A jump diffusion model for option pricing. Manage. Sci. 48 (2002) 1086–1101. | Zbl | DOI
[32] and , A second-order finite difference method for option pricing under jump-diffusion models. SIAM J. Numer. Anal. 49 (2011) 2598–2617. | MR | Zbl | DOI
[33] and , A second-order tridiagonal method for American options under jump-diffusion models. SIAM J. Sci. Comput. 33 (2011) 1860–1872. | MR | Zbl | DOI
[34] and , Fourth order compact scheme with local mesh refinement for option pricing in jump-diffusion model. Numer. Methods Part. Differ. Equ. 28 (2012) 1079–1098. | MR | DOI
[35] , and , On energy stable, maximum-principle preserving, second order BDF scheme with variable steps for the Allen-Cahn equation. SIAM J. Numer. Anal. 58 (2020) 2294–2314. | MR | DOI
[36] , and , Fast numerial solution of parabolic integro-differential equations with applications in finance, IMA preprint series 1954, University of Minnesota (2004). | Zbl
[37] , and , Fast deterministic pricing of options on Lévy driven assets. ESAIM: M2AN 38 (2004) 37–71. | MR | Zbl | Numdam | DOI
[38] , Option pricing when underlying stock returns are discontinuous. J. Fin. Econ. 3 (1976) 125–144. | Zbl | DOI
[39] and , Backward stochastic differential equations and Feynman-Kac formula for Lévy processes, with applications in finance. Bernoulli 7 (2001) 761–776. | MR | Zbl | DOI
[40] , and , Robust spectral method for numerical valuation of European options under Merton’s jump-diffusion model. Numer. Methods Part. Differ. Equ. 30 (2014) 1169–1188. | MR | Zbl | DOI
[41] and , Pricing American options under jump-diffusion models using local weak form meshless techniques. Int. J. Comput. Math. 94 (2016) 1–27. | MR
[42] and , Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method. Appl. Numer. Math. 115 (2017) 252–274. | MR | DOI
[43] , Implicit–explicit methods for reaction-diffusion problems in pattern-formation, J. Math. Biol. 34 (1995) 148–176. | MR | Zbl | DOI
[44] and , An iterative method for pricing American options under jump-diffusion models. Appl. Numer. Math. 61 (2011) 821–831. | MR | Zbl | DOI
[45] and , IMEX schemes for pricing options under jump-diffusion models. Appl. Numer. Math. 84 (2014) 33–45. | MR | Zbl | DOI
[46] , and , An IMEX-scheme for pricing options under stochastic volatility models with jumps. SIAM J. Sci. Comput. 36 (2014) B817–B834. | MR | Zbl | DOI
[47] , Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge, UK (1999). | MR | Zbl
[48] , Finite Difference Schemes and Partial Differential Equations. SIAM, Philadelphia (2004). | MR | Zbl
[49] and , Pricing Financial Instruments: The Finite Difference Method. John Wiley & Sons, Chichester, UK (2000).
[50] , Numerical valuation of European and American options under Kou’s jump-diffusion model. SIAM J. Sci. Comput. 4 (2008) 1949–1970. | MR | Zbl | DOI
[51] , Stability restrictions on second order, three-level finite-difference schemes for parabolic equations. SIAM J. Numer. Anal. 17 (1980) 300–309. | MR | Zbl | DOI
[52] , and , An implicit–explicit approach for atmospheric transport-chemistry problems. Appl. Numer. Math. 20 (1996) 191–209. | MR | Zbl | DOI
[53] and , Fast numerical valuation of options with jump under Merton’s model. J. Comput. Appl. Math. 318 (2017) 79–92. | MR | Zbl | DOI
[54] and , Variable step-size implicit–explicit linear multistep methods for time-dependent partial differential equations. J. Comput. Math. 26 (2008) 838–855. | MR | Zbl
[55] , and , On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57 (2019) 1289–1317. | MR | Zbl | DOI
[56] , and , Stability and error estimates for the variable step-size BDF2 method for linear and semilinear parabolic equations. Adv. Comput. Math. 47 (2021) 1–28. | MR | Zbl
[57] , Numerical analysis of American option pricing in a jump-diffusion model. Math. Oper. Res. 22 (1997) 668–690. | MR | Zbl | DOI
[58] and , A computational scheme for options under jump-diffusion processes. Int. J. Numer. Anal. Model. 6 (2009) 110–123. | MR | Zbl
Cité par Sources :





