A generalized finite element method for problems with sign-changing coefficients
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 939-967

Problems with sign-changing coefficients occur, for instance, in the study of transmission problems with metamaterials. In this work, we present and analyze a generalized finite element method in the spirit of the localized orthogonal decomposition, that is especially efficient when the negative and positive materials exhibit multiscale features. We derive optimal linear convergence in the energy norm independently of the potentially low regularity of the exact solution. Numerical experiments illustrate the theoretical convergence rates and show the applicability of the method for a large class of sign-changing diffusion problems.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021007
Classification : 65N30, 65N12, 65N15, 78A48, 35J20
Keywords: Generalized finite element method, multiscale method, sign-changing coefficients, T-coercivity
@article{M2AN_2021__55_3_939_0,
     author = {Chaumont-Frelet, Th\'eophile and Verf\"urth, Barbara},
     title = {A generalized finite element method for problems with sign-changing coefficients},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {939--967},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/m2an/2021007},
     mrnumber = {4253164},
     zbl = {1477.65201},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021007/}
}
TY  - JOUR
AU  - Chaumont-Frelet, Théophile
AU  - Verfürth, Barbara
TI  - A generalized finite element method for problems with sign-changing coefficients
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 939
EP  - 967
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021007/
DO  - 10.1051/m2an/2021007
LA  - en
ID  - M2AN_2021__55_3_939_0
ER  - 
%0 Journal Article
%A Chaumont-Frelet, Théophile
%A Verfürth, Barbara
%T A generalized finite element method for problems with sign-changing coefficients
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 939-967
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021007/
%R 10.1051/m2an/2021007
%G en
%F M2AN_2021__55_3_939_0
Chaumont-Frelet, Théophile; Verfürth, Barbara. A generalized finite element method for problems with sign-changing coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 939-967. doi: 10.1051/m2an/2021007

[1] A. Abdulle, M. E. Huber and S. Lemaire, An optimization-based numerical method for diffusion problems with sign-changing coefficients. C. R. Math. Acad. Sci. Paris 355 (2017) 472–478. | MR | Zbl | DOI

[2] A.-S. Bonnet-Ben Dhia, M. Dauge and K. Ramdani, Analyse spectrale et singularités d’un problème de transmission non coercif. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 717–720. | MR | Zbl | DOI

[3] A.-S. Bonnet-Ben Dhia, P. Ciarlet Jr. and C. M. Zwölf, Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math. 234 (2010) 1912–1919. | MR | Zbl | DOI

[4] A.-S. Bonnet-Ben Dhia, L. Chesnel and P. Ciarlet Jr., T-coercivity for scalar interface problems between dielectrics and metamaterials. ESAIM: M2AN 46 (2012) 1363–1387. | MR | Zbl | Numdam | DOI

[5] A.-S. Bonnet-Ben Dhia, L. Chesnel and P. Ciarlet Jr., T-coercivity for the Maxwell problem with sign-changing coefficients. Comm. Part. Differ. Equ. 39 (2014) 1007–1031. | MR | Zbl | DOI

[6] A.-S. Bonnet-Ben Dhia, L. Chesnel and P. Ciarlet Jr., Two-dimensional Maxwell’s equations with sign-changing coefficients. Appl. Numer. Math. 79 (2014) 29–41. | MR | Zbl | DOI

[7] A.-S. Bonnet-Ben Dhia, C. Carvalho and P. Ciarlet Jr., Mesh requirements for the finite element approximation of problems with sign-changing coefficients. Numer. Math. 138 (2018) 801–838. | MR | Zbl | DOI

[8] E. Bonnetier, C. Dapogny and F. Triki, Homogenization of the eigenvalues of the Neumann-Poincaré operator. Arch. Ration. Mech. Anal. 234 (2019) 777–855. | MR | Zbl | DOI

[9] R. Bunoiu and K. Ramdani, Homogenization of materials with sign changing coefficients. Commun. Math. Sci. 14 (2016) 1137–1154. | Zbl | DOI

[10] C. Carvalho, L. Chesnel and P. Ciarlet Jr., Eigenvalue problems with sign-changing coefficients. C. R. Math. Acad. Sci. Paris 355 (2017) 671–675. | MR | Zbl | DOI

[11] L. Chesnel and P. Ciarlet Jr., T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numer. Math. 124 (2013) 1–29. | MR | Zbl | DOI

[12] E. T. Chung and P. Ciarlet Jr., A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials. J. Comput. Appl. Math. 239 (2013) 189–207. | MR | Zbl | DOI

[13] P. G. Ciarlet, The finite element method for elliptic problems. In: Vol. 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). | MR | Zbl

[14] P. Ciarlet Jr. and M. Vohralík, Localization of global norms and robust a posteriori error control for transmission problems with sign-changing coefficients. ESAIM: M2AN 52 (2018) 2037–2064. | MR | Zbl | Numdam | DOI

[15] C. Engwer, P. Henning, A. Målqvist and D. Peterseim, Efficient implementation of the localized orthogonal decomposition method. Comput. Methods Appl. Mech. Eng. 350 (2019) 123–153. | MR | Zbl | DOI

[16] D. Gallistl and D. Peterseim, Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comput. Methods Appl. Mech. Eng. 295 (2015) 1–17. | MR | Zbl | DOI

[17] D. Gallistl and D. Peterseim, Computation of quasi-local effective diffusion tensors and connections to the mathematical theory of homogenization. Multiscale Model. Simul. 15 (2017) 1530–1552. | MR | Zbl | DOI

[18] F. Hellman and A. Målqvist, Contrast independent localization of multiscale problems. Multiscale Model. Simul. 15 (2017) 1325–1355. | MR | Zbl | DOI

[19] F. Hellman, A. Målqvist and S. Wang, Numerical upscaling for heterogeneous materials in fractured domains. ESAIM: M2AN 55 (2021) S761–S784. | MR | Zbl | DOI

[20] P. Henning and D. Peterseim, Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11 (2013) 1149–1175. | MR | Zbl | DOI

[21] R. Kornhuber and H. Yserentant, Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul. 14 (2016) 1017–1036. | MR | Zbl | DOI

[22] R. Kornhuber, D. Peterseim and H. Yserentant, An analysis of a class of variational multiscale methods based on subspace decomposition. Math. Comput. 87 (2018) 2765–2774. | MR | Zbl | DOI

[23] J. J. Lee and S. Rhebergen, A hybridized discontinuous Galerkin method for Poisson-type problems with sign-changing coefficients. Preprint (2019). | arXiv

[24] R. Maier, Computational multiscale methods in unstructured heterogeneous media. Ph.D. thesis, Universität Augsburg (2020).

[25] A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83 (2014) 2583–2603. | MR | Zbl | DOI

[26] S. Nicaise and J. Venel, A posteriori error estimates for a finite element approximation of transmission problems with sign changing coeficients. J. Comput. Appl. Math. 235 (2011) 4272–4282. | MR | Zbl | DOI

[27] J. B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85 (2000) 3966–3969. | DOI

[28] D. Peterseim, Variational multiscale stabilization and the exponential decay of fine-scale correctors. In: Vol. 114 of Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lect. Notes Comput. Sci. Eng. Springer, Cham (2016) 341–367. | MR | Zbl

[29] D. Peterseim, Eliminating the pollution effect in Helmholtz problems by local subscale correction. Math. Comput. 86 (2017) 1005–1036. | MR | Zbl | DOI

[30] D. Peterseim and R. Scheichl, Robust numerical upscaling of elliptic multiscale problems at high contrast. Comput. Methods Appl. Math. 16 (2016) 579–603. | MR | Zbl | DOI

[31] D. Peterseim and B. Verfürth, Computational high frequency scattering from high contrast media. Math. Comput. 89 (2020) 2649–2674. | MR | Zbl | DOI

[32] D. Peterseim, D. Varga and B. Verfürth, From domain decomposition to homogenization theory. Domain Decomposition Methods in Science and Engineering XXV. In: Vol. 138 of Lect. Notes Comp. Sci. Eng. Springer, Cham (2020) 29–40. | MR | Zbl | DOI

[33] D. R. Smith, J. B. Pendry and M. C. K. Wiltshire, Metamaterials and negative refractive index. Science 305 (2004) 788–792. | DOI

Cité par Sources :