Analysis of a backward Euler-type scheme for Maxwell’s equations in a Havriliak–Negami dispersive medium
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 479-506

For the Maxwell’s equations in a Havriliak–Negami (H-N) dispersive medium, the associated energy dissipation law has not been settled at both continuous level and discrete level. In this paper, we rigorously show that the energy of the H-N model can be bounded by the initial energy and the model is well-posed. We analyse a backward Euler-type semi-discrete scheme, and prove that the modified discrete energy decays monotonically in time. Such a strong stability ensures that the scheme is unconditionally stable. We also introduce a fast temporal convolution algorithm to alleviate the burden of the history dependence in the polarisation relation involving the singular kernel with the Mittag-Leffler function with three parameters. We provide ample numerical results to demonstrate the efficiency and accuracy of a full-discrete scheme via a spectra-Galerkin method in two dimensions. Finally, we consider an interesting application in the recovery of complex relative permittivity and some related physical quantities.

DOI : 10.1051/m2an/2021004
Classification : 65N35, 65E05, 65N12, 41A10, 41A25, 41A30, 41A58
Keywords: Maxwell’s equations, Havriliak–Negami dispersive medium, strong stability, unconditionally stable scheme, fast temporal convolution algorithm
@article{M2AN_2021__55_2_479_0,
     author = {Yang, Yubo and Wang, Li-Lian and Zeng, Fanhai},
     title = {Analysis of a backward {Euler-type} scheme for {Maxwell{\textquoteright}s} equations in a {Havriliak{\textendash}Negami} dispersive medium},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {479--506},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {2},
     doi = {10.1051/m2an/2021004},
     mrnumber = {4229195},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021004/}
}
TY  - JOUR
AU  - Yang, Yubo
AU  - Wang, Li-Lian
AU  - Zeng, Fanhai
TI  - Analysis of a backward Euler-type scheme for Maxwell’s equations in a Havriliak–Negami dispersive medium
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 479
EP  - 506
VL  - 55
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021004/
DO  - 10.1051/m2an/2021004
LA  - en
ID  - M2AN_2021__55_2_479_0
ER  - 
%0 Journal Article
%A Yang, Yubo
%A Wang, Li-Lian
%A Zeng, Fanhai
%T Analysis of a backward Euler-type scheme for Maxwell’s equations in a Havriliak–Negami dispersive medium
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 479-506
%V 55
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021004/
%R 10.1051/m2an/2021004
%G en
%F M2AN_2021__55_2_479_0
Yang, Yubo; Wang, Li-Lian; Zeng, Fanhai. Analysis of a backward Euler-type scheme for Maxwell’s equations in a Havriliak–Negami dispersive medium. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 479-506. doi: 10.1051/m2an/2021004

[1] A. Alegria, L. Goitiandia, I. Telleria and J. Colmenero, α -relaxation in the glass-transition range of amorphous polymers. 2. Influence of physical aging on the dielectric relaxation. Macromolecules 30 (1997) 3881–3888. | DOI

[2] C. S. Antonopoulos, N. V. Kantartzis and I. T. Rekanos, FDTD method for wave propagation in Havriliak-Negami media based on fractional derivative approximation. IEEE T. Magn. 53 (2017) 1–4. | DOI

[3] P. Bia, D. Caratelli, L. Mescia, R. Cicchetti, G. Maione and F. Prudenzano, FDTD method for wave propagation in Havriliak-Negami media based on fractional derivative approximation. Sign. Process. 107 (2015) 312–318.

[4] K. Biswas, G. Bohannan, R. Caponetto, A. M. Lopes and J. A. T. Machado, Fractional-order models of vegetable tissues. In: Fractional-Order Devices. Springer (2017) 73–92. | DOI

[5] M. F. Causley, P. G. Petropoulos and S. Jiang, Incorporating the Havriliak-Negami dielectric model in the FDTD method. J. Comput. Phys. 230 (2011) 3884–3899. | MR | Zbl | DOI

[6] J. Chakarothai, Novel FDTD scheme for analysis of frequency-dependent medium using fast inverse Laplace transform and Prony’s method. IEEE Trans. Antennas Propag. 67 (2019) 6076–6089. | DOI

[7] G. Cohen and S. Pernet, Finite Elements and Discontinuous Galerkin Methods for Transient Wave Equations. Springer Series in Scientific Computation. Springer (2017). | MR | DOI

[8] K. S. Cole and R. H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9 (1941) 341–351. | DOI

[9] D. W. Davidson and R. H. Cole, Dielectric relaxation in glycerol, propylene glycol, and n -propanol. J. Chem. Phys. 19 (1951) 1484–1490. | DOI

[10] P. J. W. Debye, Polar Molecules. Dover (1929). | JFM

[11] L. Demkowicz, Computing with h p -Adaptive Finite Elements: Vol. 1. One- and Two-Dimensional Elliptic and Maxwell Problems. Chapman and Hall/CRC (2006). | MR | Zbl

[12] A. Z. Elsherbeni and V. Demir, The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations. SciTech, Edison, NJ, USA (2015). | DOI

[13] A. Garca-Bernabé, R. D. Calleja, M. Sanchis, A. Del Campo, A. Bello and E. Pérez, Amorphous-smectic glassy main chain LCPs. II. Dielectric study of the glass transition. Polymer 45 (2004) 1533–1543. | DOI

[14] R. Garrappa, Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J. Numer. Anal. 53 (2015) 1350–1369. | MR | DOI

[15] R. Garrappa and G. Maione, Fractional Prabhakar derivative and applications in anomalous dielectrics: a numerical approach. Lecture Notes Electr. Eng. 407 (2017) 429–439. | DOI

[16] R. Garrappa, F. Mainardi and M. Guido, Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 19 (2016) 1105–1160. | MR | DOI

[17] A. Giusti, I. Colombaro, R. Garra, R. Garrappa, F. Polito, M. Popolizio and F. Mainardi, A practical guide to Prabhakar fractional calculus. Fract. Calc. Appl. Anal. 23 (2020) 9–54. | MR | DOI

[18] R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014). | MR | Zbl | DOI

[19] S. Havriliak and S. Negami, A complex plane analysis of α -dispersions in some polymer systems. J. Polym. Sci. C 14 (1966) 99–117. | DOI

[20] S. Havriliak and S. Negami, A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8 (1967) 161–210. | DOI

[21] C. Huang and L.-L. Wang, An accurate spectral method for the transverse magnetic mode of Maxwell equations in Cole-Cole dispersive media. Adv. Comput. Math. 45 (2019) 707–734. | MR | DOI

[22] D. F. Kelley, Piecewise linear recursive convolution for the FDTD analysis of propagation through linear isotropic dispersive dielectrics. Ph.D. thesis, Pennsylvania State University (1999).

[23] D. F. Kelley, T. J. Destan and R. J. Luebbers, Debye function expansions of complex permittivity using a hybrid particle swarm-least squares optimization approach. IEEE T. Antenn. Propag. 55 (2007) 1999–2005. | MR | DOI

[24] A. A. Kilbas, M. Saigo and R. K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators. Integr. Transf. Spec. F. 15 (2004) 31–49. | MR | Zbl | DOI

[25] J. Li and Y. Huang, Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials. Springer Series in Computational Mathematics. Springer (2013). | MR | Zbl | DOI

[26] J. Li, Y. Huang and Y. Lin, Developing finite element methods for Maxwell’s equations in a Cole-Cole dispersive medium. SIAM J. Sci. Comput. 33 (2011) 3153–3174. | MR | Zbl | DOI

[27] A. M. Lopes, J. T. Machado and E. Ramalho, Fractional-order model of wine. In: Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives. Springer (2018) 191–203. | MR

[28] C. Lubich and A. Schädle, Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24 (2002) 161–182. | MR | Zbl | DOI

[29] W. Mclean, V. Thomée and L. B. Wahlbin, Discretization with variable time steps of an evolution equation with a positive-type memory term. J. Comput. Appl. Math. 69 (1996) 49–69. | MR | Zbl | DOI

[30] L. Mescia, P. Bia and D. Caratelli, Fractional derivative based FDTD modeling of transient wave propagation in Havriliak-Negami media. IEEE Trans. Microwave Theory Tech. 62 (2014) 1920–1929. | DOI

[31] P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press (2003). | MR | Zbl | DOI

[32] P. Monk, A comparison of three mixed methods for the time-dependent Maxwell’s equations. SIAM J. Sci. Stat. Comput. 13 (1992) 1097–1122. | MR | Zbl | DOI

[33] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations to Methods of their Solution and some of their Applications. Academic, San Diego, CA (1999). | MR | Zbl

[34] C. Polk and E. Postow, Handbook of Biological Effects of Electromagnetic Fields. CRC Press (1995).

[35] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel. J. Yokohama Math. 19 (1971) 7–15. | MR | Zbl

[36] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994). | MR | Zbl | DOI

[37] G. G. Raju, Dielectrics in Electric Fields. CRC Press, New York (2016).

[38] I. T. Rekanos, An auxiliary differential equation method for FDTD modeling of wave propagation in Cole-Cole dispersive media. IEEE Trans. Antennas Propag. 58 (2012) 3666–3674. | MR | DOI

[39] I. T. Rekanos, FDTD modeling of Havriliak-Negami media. IEEE Microw. Wirel. Co. 22 (2012) 49–51. | DOI

[40] I. T. Rekanos, FDTD schemes for wave propagation in Davidson-Cole dispersive media using auxiliary differential equations. IEEE Trans. Antennas Propag. 60 (2012) 1467–1478. | MR | DOI

[41] T. Repo and S. Pulli, Application of impedance spectroscopy for selecting frost hardy varieties of English ryegrass. Ann. Botany 78 (1996) 605–609. | DOI

[42] A. Schönhals, Fast calculation of the time dependent dielectric permittivity for the Havriliak-Negami function. Acta Polym. 42 (1991) 149–151. | DOI

[43] J. W. Schuster and R. J. Luebbers, An FDTD algorithm for transient propagation in biological tissue with a Cole-Cole dispersion relation. Proc. IEEE Antennas Propag. Soc. Int. Symp. 4 (1998) 1988–1991.

[44] J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications. Springer (2011). | MR | Zbl | DOI

[45] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, London (2005). | MR | Zbl

[46] F. Torres, P. Vaudon and B. Jecko, Application of new fractional derivatives to the FDTD modeling of pulse propagation in a Cole-Cole medium. Microwave Opt. Technol. 13 (1996) 300–304. | DOI

[47] K. Xu and S. Jiang, A bootstrap method for sum-of-poles approximations. J. Sci. Comput. 55 (2013) 16–39. | MR | Zbl | DOI

[48] F. Zeng, I. Turner and K. Burrage, A stable fast time-stepping method for fractional integral and derivative operators. J. Sci. Comput. 77 (2018) 283–307. | MR | DOI

Cité par Sources :