On a nonlinear Schrödinger equation for nucleons in one space dimension
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 409-427

We study a 1D nonlinear Schrödinger equation appearing in the description of a particle inside an atomic nucleus. For various nonlinearities, the ground states are discussed and given in explicit form. Their stability is studied numerically via the time evolution of perturbed ground states. In the time evolution of general localized initial data, they are shown to appear in the long time behaviour of certain cases.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020086
Classification : 35Q55, 35C08, 65M70
Keywords: Nonlinear Schrödinger equations, ground states, numerical study
@article{M2AN_2021__55_2_409_0,
     author = {Klein, Christian and Rota Nodari, Simona},
     title = {On a nonlinear {Schr\"odinger} equation for nucleons in one space dimension},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {409--427},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {2},
     doi = {10.1051/m2an/2020086},
     mrnumber = {4229193},
     zbl = {1476.35241},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020086/}
}
TY  - JOUR
AU  - Klein, Christian
AU  - Rota Nodari, Simona
TI  - On a nonlinear Schrödinger equation for nucleons in one space dimension
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 409
EP  - 427
VL  - 55
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020086/
DO  - 10.1051/m2an/2020086
LA  - en
ID  - M2AN_2021__55_2_409_0
ER  - 
%0 Journal Article
%A Klein, Christian
%A Rota Nodari, Simona
%T On a nonlinear Schrödinger equation for nucleons in one space dimension
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 409-427
%V 55
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020086/
%R 10.1051/m2an/2020086
%G en
%F M2AN_2021__55_2_409_0
Klein, Christian; Rota Nodari, Simona. On a nonlinear Schrödinger equation for nucleons in one space dimension. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 409-427. doi: 10.1051/m2an/2020086

[1] J. Arbunich, C. Klein and C. Sparber, On a class of derivative nonlinear Schrödinger-type equations in two spatial dimensions. M2AN 53 (2019) 1477–1505. | MR | Zbl | Numdam | DOI

[2] M. Caliari, P. Kandolf, A. Ostermann and S. Rainer, The Leja method revisited: backward error analysis for the matrix exponential. SIAM J. Sci. Comput. 38 (2016) A1639–A1661. | MR | Zbl | DOI

[3] M. J. Esteban and S. Rota Nodari, Symmetric ground states for a stationary relativistic mean-field model for nucleons in the nonrelativistic limit. Rev. Math. Phys. 24 (2012) 1250025–1250055. | MR | Zbl | DOI

[4] M. J. Esteban and S. Rota Nodari, Ground states for a stationary mean-field model for a nucleon. Ann. Henri Poincaré 14 (2013) 1287–1303. | MR | Zbl | DOI

[5] C. Klein, Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation. ETNA 29 (2008) 116–135. | MR | Zbl

[6] J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9 (1988) 112–147. | MR | Zbl | DOI

[7] M. Lewin and S. Rota Nodari, Uniqueness and non-degeneracy for a nuclear nonlinear Schrödinger equation. Nonlinear Differ. Equ. App. (NoDEA) 22 (2015) 673–698. | MR | Zbl | DOI

[8] C. Sulem and P. L. Sulem, The nonlinear Schrödinger equation: self-focusing and wave collapse. In: Vol. 139 of Springer Series: Applied Mathematical Sciences. Springer, Berlin (1999). | MR | Zbl

[9] L. N. Trefethen, Spectral Methods in Matlab. SIAM, Philadelphia, PA (2000). | MR | Zbl | DOI

[10] L. Le Treust and S. Rota Nodari, Symmetric excited states for a mean-field model for a nucleon. J. Differ. Equ. 255 (2013) 3536–3563. | MR | Zbl | DOI

Cité par Sources :