We study a 1D nonlinear Schrödinger equation appearing in the description of a particle inside an atomic nucleus. For various nonlinearities, the ground states are discussed and given in explicit form. Their stability is studied numerically via the time evolution of perturbed ground states. In the time evolution of general localized initial data, they are shown to appear in the long time behaviour of certain cases.
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020086
Keywords: Nonlinear Schrödinger equations, ground states, numerical study
@article{M2AN_2021__55_2_409_0,
author = {Klein, Christian and Rota Nodari, Simona},
title = {On a nonlinear {Schr\"odinger} equation for nucleons in one space dimension},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {409--427},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {2},
doi = {10.1051/m2an/2020086},
mrnumber = {4229193},
zbl = {1476.35241},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2020086/}
}
TY - JOUR AU - Klein, Christian AU - Rota Nodari, Simona TI - On a nonlinear Schrödinger equation for nucleons in one space dimension JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - 409 EP - 427 VL - 55 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2020086/ DO - 10.1051/m2an/2020086 LA - en ID - M2AN_2021__55_2_409_0 ER -
%0 Journal Article %A Klein, Christian %A Rota Nodari, Simona %T On a nonlinear Schrödinger equation for nucleons in one space dimension %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P 409-427 %V 55 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2020086/ %R 10.1051/m2an/2020086 %G en %F M2AN_2021__55_2_409_0
Klein, Christian; Rota Nodari, Simona. On a nonlinear Schrödinger equation for nucleons in one space dimension. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 409-427. doi: 10.1051/m2an/2020086
[1] , and , On a class of derivative nonlinear Schrödinger-type equations in two spatial dimensions. M2AN 53 (2019) 1477–1505. | MR | Zbl | Numdam | DOI
[2] , , and , The Leja method revisited: backward error analysis for the matrix exponential. SIAM J. Sci. Comput. 38 (2016) A1639–A1661. | MR | Zbl | DOI
[3] and , Symmetric ground states for a stationary relativistic mean-field model for nucleons in the nonrelativistic limit. Rev. Math. Phys. 24 (2012) 1250025–1250055. | MR | Zbl | DOI
[4] and , Ground states for a stationary mean-field model for a nucleon. Ann. Henri Poincaré 14 (2013) 1287–1303. | MR | Zbl | DOI
[5] , Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation. ETNA 29 (2008) 116–135. | MR | Zbl
[6] , , and , Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9 (1988) 112–147. | MR | Zbl | DOI
[7] and , Uniqueness and non-degeneracy for a nuclear nonlinear Schrödinger equation. Nonlinear Differ. Equ. App. (NoDEA) 22 (2015) 673–698. | MR | Zbl | DOI
[8] and , The nonlinear Schrödinger equation: self-focusing and wave collapse. In: Vol. 139 of Springer Series: Applied Mathematical Sciences. Springer, Berlin (1999). | MR | Zbl
[9] , Spectral Methods in Matlab. SIAM, Philadelphia, PA (2000). | MR | Zbl | DOI
[10] and , Symmetric excited states for a mean-field model for a nucleon. J. Differ. Equ. 255 (2013) 3536–3563. | MR | Zbl | DOI
Cité par Sources :





