A virtual element method for the von Kármán equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 533-560

In this article we propose and analyze a Virtual Element Method (VEM) to approximate the isolated solutions of the von Kármán equations, which describe the deformation of very thin elastic plates. We consider a variational formulation in terms of two variables: the transverse displacement of the plate and the Airy stress function. The VEM scheme is conforming in H2 for both variables and has the advantages of supporting general polygonal meshes and is simple in terms of coding aspects. We prove that the discrete problem is well posed for h small enough and optimal error estimates are obtained. Finally, numerical experiments are reported illustrating the behavior of the virtual scheme on different families of meshes.

DOI : 10.1051/m2an/2020085
Classification : 65N30, 65N12, 74K20, 74S05, 65N15
Keywords: Virtual element method, von Kármán equations, error estimates, polygonal meshes
@article{M2AN_2021__55_2_533_0,
     author = {Lovadina, Carlo and Mora, David and Vel\'asquez, Iv\'an},
     title = {A virtual element method for the von {K\'arm\'an} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {533--560},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {2},
     doi = {10.1051/m2an/2020085},
     mrnumber = {4229191},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020085/}
}
TY  - JOUR
AU  - Lovadina, Carlo
AU  - Mora, David
AU  - Velásquez, Iván
TI  - A virtual element method for the von Kármán equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 533
EP  - 560
VL  - 55
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020085/
DO  - 10.1051/m2an/2020085
LA  - en
ID  - M2AN_2021__55_2_533_0
ER  - 
%0 Journal Article
%A Lovadina, Carlo
%A Mora, David
%A Velásquez, Iván
%T A virtual element method for the von Kármán equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 533-560
%V 55
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020085/
%R 10.1051/m2an/2020085
%G en
%F M2AN_2021__55_2_533_0
Lovadina, Carlo; Mora, David; Velásquez, Iván. A virtual element method for the von Kármán equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 533-560. doi: 10.1051/m2an/2020085

[1] R. A. Adams and J. J. Fournier, Sobolev Spaces. Elsevier (2003). | MR | Zbl

[2] B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini and A. Russo, Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. | MR | DOI

[3] V. Anaya, M. Bendahmane, D. Mora and M. Sepúlveda, A virtual element method for a nonlocal FitzHugh–Nagumo model of cardiac electrophysiology. IMA J. Numer. Anal. 40 (2020) 1544–1576. | MR | DOI

[4] P. F. Antonietti, L. Beirão Da Veiga, D. Mora and M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. | MR | Zbl | DOI

[5] P. F. Antonietti, L. Beirão Da Veiga, S. Scacchi and M. Verani, A C 1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. | MR | DOI

[6] E. Artioli, S. De Miranda, C. Lovadina and L. Patruno, A family of virtual element methods for plane elasticity problems based on the Hellinger-Reissner principle. Comput. Methods Appl. Mech. Eng. 340 (2018) 978–999. | MR | DOI

[7] K. Atkinson and W. Han, Theoretical Numerical Analysis. Texts in Applied Mathematics. Springer, Dordrecht (2009). | MR | Zbl

[8] L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | MR | Zbl | DOI

[9] L. Beirão Da Veiga, F. Brezzi and L. D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. | MR | Zbl | DOI

[10] L. Beirão Da Veiga, F. Brezzi, L. D. Marini and A. Russo, The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | MR | Zbl | DOI

[11] L. Beirão Da Veiga, C. Lovadina and D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295 (2015) 327–346. | MR | DOI

[12] L. Beirão Da Veiga, F. Brezzi, F. Dassi, L. D. Marini and A. Russo, Virtual element approximation of 2D magnetostatic problems. Comput. Methods Appl. Mech. Eng. 327 (2017) 173–195. | MR | DOI

[13] L. Beirão Da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. | MR | DOI

[14] L. Beirão Da Veiga, F. Brezzi, F. Dassi, L. D. Marini and A. Russo, Lowest order virtual element approximation of magnetostatic problems. Comput. Methods Appl. Mech. Engrg. 332 (2018) 343–362. | MR | DOI

[15] L. Beirão Da Veiga, C. Lovadina and G. Vacca, Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56 (2018) 1210–1242. | MR | DOI

[16] L. Beirão Da Veiga, D. Mora and G. Rivera, Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates. Math. Comput. 88 (2019) 149–178. | MR | DOI

[17] P. E. Bjørstad and B. P. Tjøstheim, High precision solutions of two fourth order eigenvalue problems. Computing 63 (1999) 97–107. | MR | Zbl | DOI

[18] H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2 (1980) 556–581. | MR | Zbl | DOI

[19] S. C. Brenner, Q. Guan and L.-Y. Sung, Some estimates for virtual element methods. Comput. Methods Appl. Math. 17 (2017) 553–574. | MR | DOI

[20] S. C. Brenner, M. Neilan, A. Reiser and L.-Y. Sung, A C 0 interior penalty method for a von Kármán plate. Numer. Math. 135 (2017) 803–832. | MR | DOI

[21] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York (2008). | MR | Zbl | DOI

[22] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011). | MR | Zbl | DOI

[23] F. Brezzi, Finite element approximations of the von Kármán equations. RAIRO Anal. Numér. 12 (1978) 303–312. | MR | Zbl | Numdam | DOI

[24] F. Brezzi and L. D. Marini, Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | MR | Zbl | DOI

[25] E. Cáceres and G. N. Gatica, A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37 (2017) 296–331. | MR | DOI

[26] A. Cangiani, P. Chatzipantelidis, G. Diwan and E. H. Georgoulis, Virtual element method for quasilinear elliptic problems. IMA J. Numer. Anal. 40 (2020) 2450–2472. | MR | DOI

[27] A. Cangiani, G. Manzini and O. J. Sutton, Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. | MR

[28] C. Carstensen, G. Mallik and N. Nataraj, A priori and a posteriori error control of discontinuous galerkin finite element methods for the von kármán equations. IMA J. Numer. Anal. 39 (2018) 167–200.

[29] C. Chinosi, Virtual elements for the Reissner-Mindlin plate problem. Numer. Methods Part. Differ. Equ. 34 (2018) 1117–1144. | MR | DOI

[30] C. Chinosi and L. D. Marini, Virtual element method for fourth order problems: L 2 -estimates. Comput. Math. Appl. 72 (2016) 1959–1967. | MR | DOI

[31] P. G. Ciarlet, Mathematical Elasticity. Vol. II. Theory of Plates. North-Holland, Amsterdam (1997). | MR | Zbl

[32] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002). | MR | Zbl | DOI

[33] P. G. Ciarlet and P. Rabier, Les équations de von Kármán. In: Vol. 826 of Lecture Notes in Mathematics. Springer, Berlin (1980). | MR | Zbl | DOI

[34] A. Ern and G. L. Guermond, Theory and practice of finite elements. In: Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). | MR | Zbl | DOI

[35] G. N. Gatica, M. Munar and F. A. Sequeira, A mixed virtual element method for the Navier-Stokes equations. Math. Models Methods Appl. Sci. 28 (2018) 2719–2762. | MR | DOI

[36] G. N. Gatica, M. Munar and F. A. Sequeira, A mixed virtual element method for the Boussinesq problem on polygonal mesh. J. Comput. Math. To appear in: DOI: . | DOI | MR

[37] F. Gazzola and Y. Wang, Modeling suspension bridges through the von Kármán quasilinear plate equations. Contrib. Nonlinear Elliptic Equ. Syst. 86 (2015) 269–297. | MR | DOI

[38] G. H. Knightly, An existence theorem for the von Kármán equations. Arch. Ration. Mech. Anal. 27 (1967) 233–242. | MR | Zbl | DOI

[39] G. Mallik and N. Nataraj, Conforming and nonconforming finite element methods for canonical von Kármán equations. Int. J. Adv. Eng. Sci. Appl. Math. 7 (2015) 86–95. | MR | DOI

[40] G. Mallik and N. Nataraj, Conforming finite element methods for the von Kármán equations. Adv. Comput. Math. 42 (2016) 1031–1054. | MR | DOI

[41] G. Mallik and N. Nataraj, A nonconforming finite element approximation for the von Karman equations. ESAIM:M2AN 50 (2016) 433–454. | MR | Numdam | Zbl | DOI

[42] L. Mascotto, I. Perugia and A. Pichler, Non-conforming harmonic virtual element method: h - and p -versions. J. Sci. Comput. 77 (2018) 1874–1908. | MR | DOI

[43] D. Mora and R. Rodríguez, A piecewise linear finite element method for the buckling and the vibration problems of thin plates. Math. Comput. 78 (2009) 1891–1917. | MR | Zbl | DOI

[44] D. Mora and I. Velásquez, Virtual element for the buckling problem of Kirchhoff-Love plates. Comput. Methods Appl. Mech. Eng. 360 (2020) 112687. | MR | DOI

[45] D. Mora, G. Rivera and I. Velásquez, A virtual element method for the vibration problem of Kirchhoff plates. ESAIM:M2AN 52 (2018) 1437–1456. | MR | Numdam | Zbl | DOI

[46] I. Perugia, P. Pietra and A. Russo, A plane wave virtual element method for the Helmholtz problem. ESAIM:M2AN 50 (2016) 783–808. | MR | Zbl | Numdam | DOI

[47] G. Vacca, An H 1 -conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28 (2018) 194. | MR | DOI

[48] T. Von Kármán, Festigkeitsprobleme im maschinenbau. Encycl. der Mathematischen Wissenschaften. Leipzig IV/4 (1910) 348–352.

[49] Y. Wang, An evolution von Kármán equation modeling suspension bridges. Nonlinear Anal. 169 (2018) 59–78. | MR | DOI

[50] P. Wriggers, W. T. Rust and B. D. Reddy, A virtual element method for contact. Comput. Mech. 58 (2016) 1039–1050. | MR | Zbl | DOI

Cité par Sources :