In this article we propose and analyze a Virtual Element Method (VEM) to approximate the isolated solutions of the von Kármán equations, which describe the deformation of very thin elastic plates. We consider a variational formulation in terms of two variables: the transverse displacement of the plate and the Airy stress function. The VEM scheme is conforming in H2 for both variables and has the advantages of supporting general polygonal meshes and is simple in terms of coding aspects. We prove that the discrete problem is well posed for h small enough and optimal error estimates are obtained. Finally, numerical experiments are reported illustrating the behavior of the virtual scheme on different families of meshes.
Keywords: Virtual element method, von Kármán equations, error estimates, polygonal meshes
@article{M2AN_2021__55_2_533_0,
author = {Lovadina, Carlo and Mora, David and Vel\'asquez, Iv\'an},
title = {A virtual element method for the von {K\'arm\'an} equations},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {533--560},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {2},
doi = {10.1051/m2an/2020085},
mrnumber = {4229191},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2020085/}
}
TY - JOUR AU - Lovadina, Carlo AU - Mora, David AU - Velásquez, Iván TI - A virtual element method for the von Kármán equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - 533 EP - 560 VL - 55 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2020085/ DO - 10.1051/m2an/2020085 LA - en ID - M2AN_2021__55_2_533_0 ER -
%0 Journal Article %A Lovadina, Carlo %A Mora, David %A Velásquez, Iván %T A virtual element method for the von Kármán equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P 533-560 %V 55 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2020085/ %R 10.1051/m2an/2020085 %G en %F M2AN_2021__55_2_533_0
Lovadina, Carlo; Mora, David; Velásquez, Iván. A virtual element method for the von Kármán equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 533-560. doi: 10.1051/m2an/2020085
[1] and , Sobolev Spaces. Elsevier (2003). | MR | Zbl
[2] , , , and , Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. | MR | DOI
[3] , , and , A virtual element method for a nonlocal FitzHugh–Nagumo model of cardiac electrophysiology. IMA J. Numer. Anal. 40 (2020) 1544–1576. | MR | DOI
[4] , , and , A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. | MR | Zbl | DOI
[5] , , and , A virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. | MR | DOI
[6] , , and , A family of virtual element methods for plane elasticity problems based on the Hellinger-Reissner principle. Comput. Methods Appl. Mech. Eng. 340 (2018) 978–999. | MR | DOI
[7] and , Theoretical Numerical Analysis. Texts in Applied Mathematics. Springer, Dordrecht (2009). | MR | Zbl
[8] , , , , and , Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | MR | Zbl | DOI
[9] , and , Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. | MR | Zbl | DOI
[10] , , and , The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | MR | Zbl | DOI
[11] , and , A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295 (2015) 327–346. | MR | DOI
[12] , , , and , Virtual element approximation of 2D magnetostatic problems. Comput. Methods Appl. Mech. Eng. 327 (2017) 173–195. | MR | DOI
[13] , and , Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. | MR | DOI
[14] , , , and , Lowest order virtual element approximation of magnetostatic problems. Comput. Methods Appl. Mech. Engrg. 332 (2018) 343–362. | MR | DOI
[15] , and , Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56 (2018) 1210–1242. | MR | DOI
[16] , and , Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates. Math. Comput. 88 (2019) 149–178. | MR | DOI
[17] and , High precision solutions of two fourth order eigenvalue problems. Computing 63 (1999) 97–107. | MR | Zbl | DOI
[18] and , On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2 (1980) 556–581. | MR | Zbl | DOI
[19] , and , Some estimates for virtual element methods. Comput. Methods Appl. Math. 17 (2017) 553–574. | MR | DOI
[20] , , and , A interior penalty method for a von Kármán plate. Numer. Math. 135 (2017) 803–832. | MR | DOI
[21] and , The Mathematical Theory of Finite Element Methods. Springer, New York (2008). | MR | Zbl | DOI
[22] , Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011). | MR | Zbl | DOI
[23] , Finite element approximations of the von Kármán equations. RAIRO Anal. Numér. 12 (1978) 303–312. | MR | Zbl | Numdam | DOI
[24] and , Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | MR | Zbl | DOI
[25] and , A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37 (2017) 296–331. | MR | DOI
[26] , , and , Virtual element method for quasilinear elliptic problems. IMA J. Numer. Anal. 40 (2020) 2450–2472. | MR | DOI
[27] , and , Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. | MR
[28] , and , A priori and a posteriori error control of discontinuous galerkin finite element methods for the von kármán equations. IMA J. Numer. Anal. 39 (2018) 167–200.
[29] , Virtual elements for the Reissner-Mindlin plate problem. Numer. Methods Part. Differ. Equ. 34 (2018) 1117–1144. | MR | DOI
[30] and , Virtual element method for fourth order problems: -estimates. Comput. Math. Appl. 72 (2016) 1959–1967. | MR | DOI
[31] , Mathematical Elasticity. Vol. II. Theory of Plates. North-Holland, Amsterdam (1997). | MR | Zbl
[32] , The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002). | MR | Zbl | DOI
[33] and , Les équations de von Kármán. In: Vol. 826 of Lecture Notes in Mathematics. Springer, Berlin (1980). | MR | Zbl | DOI
[34] and , Theory and practice of finite elements. In: Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). | MR | Zbl | DOI
[35] , and , A mixed virtual element method for the Navier-Stokes equations. Math. Models Methods Appl. Sci. 28 (2018) 2719–2762. | MR | DOI
[36] , and , A mixed virtual element method for the Boussinesq problem on polygonal mesh. J. Comput. Math. To appear in: DOI: . | DOI | MR
[37] and , Modeling suspension bridges through the von Kármán quasilinear plate equations. Contrib. Nonlinear Elliptic Equ. Syst. 86 (2015) 269–297. | MR | DOI
[38] , An existence theorem for the von Kármán equations. Arch. Ration. Mech. Anal. 27 (1967) 233–242. | MR | Zbl | DOI
[39] and , Conforming and nonconforming finite element methods for canonical von Kármán equations. Int. J. Adv. Eng. Sci. Appl. Math. 7 (2015) 86–95. | MR | DOI
[40] and , Conforming finite element methods for the von Kármán equations. Adv. Comput. Math. 42 (2016) 1031–1054. | MR | DOI
[41] and , A nonconforming finite element approximation for the von Karman equations. ESAIM:M2AN 50 (2016) 433–454. | MR | Numdam | Zbl | DOI
[42] , and , Non-conforming harmonic virtual element method: - and -versions. J. Sci. Comput. 77 (2018) 1874–1908. | MR | DOI
[43] and , A piecewise linear finite element method for the buckling and the vibration problems of thin plates. Math. Comput. 78 (2009) 1891–1917. | MR | Zbl | DOI
[44] and , Virtual element for the buckling problem of Kirchhoff-Love plates. Comput. Methods Appl. Mech. Eng. 360 (2020) 112687. | MR | DOI
[45] , and , A virtual element method for the vibration problem of Kirchhoff plates. ESAIM:M2AN 52 (2018) 1437–1456. | MR | Numdam | Zbl | DOI
[46] , and , A plane wave virtual element method for the Helmholtz problem. ESAIM:M2AN 50 (2016) 783–808. | MR | Zbl | Numdam | DOI
[47] , An -conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28 (2018) 194. | MR | DOI
[48] , Festigkeitsprobleme im maschinenbau. Encycl. der Mathematischen Wissenschaften. Leipzig IV/4 (1910) 348–352.
[49] , An evolution von Kármán equation modeling suspension bridges. Nonlinear Anal. 169 (2018) 59–78. | MR | DOI
[50] , and , A virtual element method for contact. Comput. Mech. 58 (2016) 1039–1050. | MR | Zbl | DOI
Cité par Sources :





