Further results on a space-time FOSLS formulation of parabolic PDEs
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 283-299

In [2019, Space-time least-squares finite elements for parabolic equations, arXiv:1911.01942] by Führer and Karkulik, well-posedness of a space-time First-Order System Least-Squares formulation of the heat equation was proven. In the present work, this result is generalized to general second order parabolic PDEs with possibly inhomogenoeus boundary conditions, and plain convergence of a standard adaptive finite element method driven by the least-squares estimator is demonstrated. The proof of the latter easily extends to a large class of least-squares formulations.

DOI : 10.1051/m2an/2020084
Classification : 35K20, 65M12, 65M15, 65M60
Keywords: Parabolic PDEs, boundary conditions, space-time FOSLS, convergence of adaptive algorithm
@article{M2AN_2021__55_1_283_0,
     author = {Gantner, Gregor and Stevenson, Rob},
     title = {Further results on a space-time {FOSLS} formulation of parabolic {PDEs}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {283--299},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {1},
     doi = {10.1051/m2an/2020084},
     mrnumber = {4216839},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020084/}
}
TY  - JOUR
AU  - Gantner, Gregor
AU  - Stevenson, Rob
TI  - Further results on a space-time FOSLS formulation of parabolic PDEs
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 283
EP  - 299
VL  - 55
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020084/
DO  - 10.1051/m2an/2020084
LA  - en
ID  - M2AN_2021__55_1_283_0
ER  - 
%0 Journal Article
%A Gantner, Gregor
%A Stevenson, Rob
%T Further results on a space-time FOSLS formulation of parabolic PDEs
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 283-299
%V 55
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020084/
%R 10.1051/m2an/2020084
%G en
%F M2AN_2021__55_1_283_0
Gantner, Gregor; Stevenson, Rob. Further results on a space-time FOSLS formulation of parabolic PDEs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 283-299. doi: 10.1051/m2an/2020084

[1] R. Andreev, Stability of sparse space-time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal. 33 (2013) 242–260. | MR | Zbl | DOI

[2] I. Babuška and T. Janik, The h - p version of the finite element method for parabolic equations. I. The p -version in time. Numer. Methods Part. Differ. Equ. 5 (1989) 363–399. | MR | Zbl | DOI

[3] I. Babuška and T. Janik, The h - p version of the finite element method for parabolic equations. II. The h - p version in time. Numer. Methods Part. Differ. Equ. 6 (1990) 343–369. | MR | Zbl | DOI

[4] P. B. Bochev and M. D. Gunzburger, Least-squares finite element methods. In: Vol. 166 of Applied Mathematical Sciences. Springer, New York (2009). | MR | Zbl

[5] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, 3rd edition. In: Texts in Applied Mathematics, Springer, New York (2008). | MR | Zbl | DOI

[6] P. Bringmann and C. Carstensen, h -adaptive least-squares finite element methods for the 2D Stokes equations of any order with optimal convergence rates. Comput. Math. Appl. 74 (2017) 1923–1939. | MR | DOI

[7] P. Bringmann, C. Carstensen and G. Starke, An adaptive least-squares FEM for linear elasticity with optimal convergence rates. SIAM J. Numer. Anal. 56 (2018) 428–447. | MR | DOI

[8] Z. Cai, R. Lazarov, T. A. Manteuffel and S. F. Mccormick, First-order system least squares for second-order partial differential equations. I. SIAM J. Numer. Anal. 31 (1994) 1785–1799. | MR | Zbl | DOI

[9] Z. Cai, B. Lee and P. Wang, Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42 (2004) 843–859. | MR | Zbl | DOI

[10] Z. Cai, J. Korsawe and G. Starke, An adaptive least squares mixed finite element method for the stress-displacement formulation of linear elasticity. Numer. Methods Part. Differ. Equ. 21 (2005) 132–148. | MR | Zbl | DOI

[11] C. Carstensen, Collective marking for adaptive least-squares finite element methods with optimal rates. Math. Comput. 89 (2020) 89–103. | MR | DOI

[12] C. Carstensen and E.-J. Park, Convergence and optimality of adaptive least squares finite element methods. SIAM J. Numer. Anal. 53 (2015) 43–62. | MR | DOI

[13] C. Carstensen, E.-J. Park and P. Bringmann, Convergence of natural adaptive least squares finite element methods. Numer. Math. 136 (2017) 1097–1115. | MR | DOI

[14] M. Costabel, Boundary integral operators for the heat equation. Integral Equ. Oper. Theory 13 (1990) 498–552. | MR | Zbl | DOI

[15] R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology. In: Vol. 5 of Evolution Problems I. Springer-Verlag, Berlin (1992). | MR | Zbl

[16] D. Devaud and Ch Schwab, Space-time h p -approximation of parabolic equations. Calcolo 55 (2018) 23. | MR | DOI

[17] A. Ern and J.-L. Guermond, Theory and practice of finite elements. In: Vol. 159 of Applied Mathematical Sciences. Springer, New York (2004). | MR | Zbl | DOI

[18] T. Führer and M. Karkulik, Space-time least-squares finite elements for parabolic equations. Preprint (2019). | arXiv | MR

[19] T. Führer and D. Praetorius, A short note on plain convergence of adaptive least-squares finite element methods. Comput. Math. Appl. 80 (2020) 1619–1632. | MR | DOI

[20] M. J. Gander and M. Neumüller, Analysis of a new space-time parallel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput. 38 (2016) A2173–A2208. | MR | DOI

[21] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer-Verlag, Berlin (1986). | MR | Zbl | DOI

[22] M. D. Gunzburger and A. Kunoth, Space-time adaptive wavelet methods for control problems constrained by parabolic evolution equations. SIAM J. Contr. Optim. 49 (2011) 1150–1170. | MR | Zbl | DOI

[23] U. Langer, S. E. Moore and M. Neumüller, Space-time isogeometric analysis of parabolic evolution problems. Comput. Methods Appl. Mech. Eng. 306 (2016) 342–363. | MR | DOI

[24] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg (1972). | MR | Zbl

[25] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. II. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182. Springer-Verlag, New York-Heidelberg (1972). | MR | Zbl

[26] M. Neumüller and I. Smears, Time-parallel iterative solvers for parabolic evolution equations. SIAM J. Sci. Comput. 41 (2019) C28–C51. | MR | DOI

[27] C.-M. Pfeiler and D. Praetorius, Dörfler marking with minimal cardinality is a linear complexity problem. Math. Comput. 89 (2020) 2735–2752. | MR | DOI

[28] N. Rekatsinas and R. Stevenson, An optimal adaptive tensor product wavelet solver of a space-time fosls formulation of parabolic evolution problems. Adv. Comput. Math. 45 (2018) 1031–1066. | MR | DOI

[29] Ch Schwab and R. P. Stevenson, A space-time adaptive wavelet method for parabolic evolution problems. Math. Comput. 78 (2009) 1293–1318. | MR | Zbl | DOI

[30] Ch Schwab and R. P. Stevenson, Fractional space-time variational formulations of (Navier)–Stokes equations. SIAM J. Math. Anal. 49 (2017) 2442–2467. | MR | DOI

[31] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | MR | Zbl | DOI

[32] K. G. Siebert, A convergence proof for adaptive finite elements without lower bound. IMA J. Numer. Anal. 31 (2011) 947–970. | MR | Zbl | DOI

[33] O. Steinbach, Space-time finite element methods for parabolic problems. Comput. Methods Appl. Math. 15 (2015) 551–566. | MR | DOI

[34] O. Steinbach and M. Zank, Coercive space-time finite element methods for initial boundary value problems, Berichte aus dem Institut für Angewandte Mathematik, Bericht 2018/7, Technische Universit ät Graz (2018). | MR

[35] R. P. Stevenson, The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77 (2008) 227–241. | MR | Zbl | DOI

[36] R. P. Stevenson, First-order system least squares with inhomogeneous boundary conditions. IMA J. Numer. Anal. 34 (2014) 863–878. | MR | Zbl | DOI

[37] R. P. Stevenson and R. Van Venetië, Uniform preconditioners for problems of negative order. Math. Comput. 89 (2020) 645–674. | MR | DOI

[38] R. P. Stevenson and J. Westerdiep, Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic evolution equations. IMA J. Numer. Anal. (2020). | MR

[39] J. Storn, Topics in least-squares and discontinuous Petrov-Galerkin finite element analysis. Ph.D. thesis, Humboldt-Universität zu Berlin (2019).

[40] K. Urban and A. T. Patera, An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83 (2014) 1599–1615. | MR | Zbl | DOI

[41] I. Voulis and A. Reusken, A time dependent Stokes interface problem: Well-posedness and space-time finite element discretization. ESAIM:M2AN 52 (2018) 2187–2213. | MR | Numdam | DOI

[42] J. Wloka, Partielle Differentialgleichungen: Sobolevräume und Randwertaufgaben. B.G. Teubner, Stuttgart (1982). | MR | Zbl | DOI

Cité par Sources :