In [2019, Space-time least-squares finite elements for parabolic equations, arXiv:1911.01942] by Führer and Karkulik, well-posedness of a space-time First-Order System Least-Squares formulation of the heat equation was proven. In the present work, this result is generalized to general second order parabolic PDEs with possibly inhomogenoeus boundary conditions, and plain convergence of a standard adaptive finite element method driven by the least-squares estimator is demonstrated. The proof of the latter easily extends to a large class of least-squares formulations.
Keywords: Parabolic PDEs, boundary conditions, space-time FOSLS, convergence of adaptive algorithm
@article{M2AN_2021__55_1_283_0,
author = {Gantner, Gregor and Stevenson, Rob},
title = {Further results on a space-time {FOSLS} formulation of parabolic {PDEs}},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {283--299},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {1},
doi = {10.1051/m2an/2020084},
mrnumber = {4216839},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2020084/}
}
TY - JOUR AU - Gantner, Gregor AU - Stevenson, Rob TI - Further results on a space-time FOSLS formulation of parabolic PDEs JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - 283 EP - 299 VL - 55 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2020084/ DO - 10.1051/m2an/2020084 LA - en ID - M2AN_2021__55_1_283_0 ER -
%0 Journal Article %A Gantner, Gregor %A Stevenson, Rob %T Further results on a space-time FOSLS formulation of parabolic PDEs %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P 283-299 %V 55 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2020084/ %R 10.1051/m2an/2020084 %G en %F M2AN_2021__55_1_283_0
Gantner, Gregor; Stevenson, Rob. Further results on a space-time FOSLS formulation of parabolic PDEs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 283-299. doi: 10.1051/m2an/2020084
[1] , Stability of sparse space-time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal. 33 (2013) 242–260. | MR | Zbl | DOI
[2] and , The version of the finite element method for parabolic equations. I. The -version in time. Numer. Methods Part. Differ. Equ. 5 (1989) 363–399. | MR | Zbl | DOI
[3] and , The version of the finite element method for parabolic equations. II. The version in time. Numer. Methods Part. Differ. Equ. 6 (1990) 343–369. | MR | Zbl | DOI
[4] and , Least-squares finite element methods. In: Vol. 166 of Applied Mathematical Sciences. Springer, New York (2009). | MR | Zbl
[5] and , The mathematical theory of finite element methods, 3rd edition. In: Texts in Applied Mathematics, Springer, New York (2008). | MR | Zbl | DOI
[6] and , -adaptive least-squares finite element methods for the 2D Stokes equations of any order with optimal convergence rates. Comput. Math. Appl. 74 (2017) 1923–1939. | MR | DOI
[7] , and , An adaptive least-squares FEM for linear elasticity with optimal convergence rates. SIAM J. Numer. Anal. 56 (2018) 428–447. | MR | DOI
[8] , , and , First-order system least squares for second-order partial differential equations. I. SIAM J. Numer. Anal. 31 (1994) 1785–1799. | MR | Zbl | DOI
[9] , and , Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42 (2004) 843–859. | MR | Zbl | DOI
[10] , and , An adaptive least squares mixed finite element method for the stress-displacement formulation of linear elasticity. Numer. Methods Part. Differ. Equ. 21 (2005) 132–148. | MR | Zbl | DOI
[11] , Collective marking for adaptive least-squares finite element methods with optimal rates. Math. Comput. 89 (2020) 89–103. | MR | DOI
[12] and , Convergence and optimality of adaptive least squares finite element methods. SIAM J. Numer. Anal. 53 (2015) 43–62. | MR | DOI
[13] , and , Convergence of natural adaptive least squares finite element methods. Numer. Math. 136 (2017) 1097–1115. | MR | DOI
[14] , Boundary integral operators for the heat equation. Integral Equ. Oper. Theory 13 (1990) 498–552. | MR | Zbl | DOI
[15] and , Mathematical analysis and numerical methods for science and technology. In: Vol. 5 of Evolution Problems I. Springer-Verlag, Berlin (1992). | MR | Zbl
[16] and , Space-time -approximation of parabolic equations. Calcolo 55 (2018) 23. | MR | DOI
[17] and , Theory and practice of finite elements. In: Vol. 159 of Applied Mathematical Sciences. Springer, New York (2004). | MR | Zbl | DOI
[18] and , Space-time least-squares finite elements for parabolic equations. Preprint (2019). | arXiv | MR
[19] and , A short note on plain convergence of adaptive least-squares finite element methods. Comput. Math. Appl. 80 (2020) 1619–1632. | MR | DOI
[20] and , Analysis of a new space-time parallel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput. 38 (2016) A2173–A2208. | MR | DOI
[21] and , Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer-Verlag, Berlin (1986). | MR | Zbl | DOI
[22] and , Space-time adaptive wavelet methods for control problems constrained by parabolic evolution equations. SIAM J. Contr. Optim. 49 (2011) 1150–1170. | MR | Zbl | DOI
[23] , and , Space-time isogeometric analysis of parabolic evolution problems. Comput. Methods Appl. Mech. Eng. 306 (2016) 342–363. | MR | DOI
[24] and , Non-Homogeneous Boundary Value Problems and Applications, Vol. I. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg (1972). | MR | Zbl
[25] and , Non-Homogeneous Boundary Value Problems and Applications. Vol. II. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182. Springer-Verlag, New York-Heidelberg (1972). | MR | Zbl
[26] and , Time-parallel iterative solvers for parabolic evolution equations. SIAM J. Sci. Comput. 41 (2019) C28–C51. | MR | DOI
[27] and , Dörfler marking with minimal cardinality is a linear complexity problem. Math. Comput. 89 (2020) 2735–2752. | MR | DOI
[28] and , An optimal adaptive tensor product wavelet solver of a space-time fosls formulation of parabolic evolution problems. Adv. Comput. Math. 45 (2018) 1031–1066. | MR | DOI
[29] and , A space-time adaptive wavelet method for parabolic evolution problems. Math. Comput. 78 (2009) 1293–1318. | MR | Zbl | DOI
[30] and , Fractional space-time variational formulations of (Navier)–Stokes equations. SIAM J. Math. Anal. 49 (2017) 2442–2467. | MR | DOI
[31] and , Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | MR | Zbl | DOI
[32] , A convergence proof for adaptive finite elements without lower bound. IMA J. Numer. Anal. 31 (2011) 947–970. | MR | Zbl | DOI
[33] , Space-time finite element methods for parabolic problems. Comput. Methods Appl. Math. 15 (2015) 551–566. | MR | DOI
[34] and , Coercive space-time finite element methods for initial boundary value problems, Berichte aus dem Institut für Angewandte Mathematik, Bericht 2018/7, Technische Universit ät Graz (2018). | MR
[35] , The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77 (2008) 227–241. | MR | Zbl | DOI
[36] , First-order system least squares with inhomogeneous boundary conditions. IMA J. Numer. Anal. 34 (2014) 863–878. | MR | Zbl | DOI
[37] and , Uniform preconditioners for problems of negative order. Math. Comput. 89 (2020) 645–674. | MR | DOI
[38] and , Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic evolution equations. IMA J. Numer. Anal. (2020). | MR
[39] , Topics in least-squares and discontinuous Petrov-Galerkin finite element analysis. Ph.D. thesis, Humboldt-Universität zu Berlin (2019).
[40] and , An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83 (2014) 1599–1615. | MR | Zbl | DOI
[41] and , A time dependent Stokes interface problem: Well-posedness and space-time finite element discretization. ESAIM:M2AN 52 (2018) 2187–2213. | MR | Numdam | DOI
[42] , Partielle Differentialgleichungen: Sobolevräume und Randwertaufgaben. B.G. Teubner, Stuttgart (1982). | MR | Zbl | DOI
Cité par Sources :





