Non-local variant of the optimised Schwarz method for arbitrary non-overlapping subdomain partitions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 429-448

We consider a scalar wave propagation in harmonic regime modelled by Helmholtz equation with heterogeneous coefficients. Using the Multi-Trace Formalism (MTF), we propose a new variant of the Optimized Schwarz Method (OSM) that remains valid in the presence of cross-points in the subdomain partition. This leads to the derivation of a strongly coercive formulation of our Helmholtz problem posed on the union of all interfaces. The corresponding operator takes the form “identity + non-expansive”.

DOI : 10.1051/m2an/2020083
Classification : 65N38, 65N55, 31B10
Keywords: Domain decomposition, wave propagation, Helmholtz, integral operators, cross point
@article{M2AN_2021__55_2_429_0,
     author = {Claeys, Xavier},
     title = {Non-local variant of the optimised {Schwarz} method for arbitrary non-overlapping subdomain partitions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {429--448},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {2},
     doi = {10.1051/m2an/2020083},
     mrnumber = {4230421},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020083/}
}
TY  - JOUR
AU  - Claeys, Xavier
TI  - Non-local variant of the optimised Schwarz method for arbitrary non-overlapping subdomain partitions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 429
EP  - 448
VL  - 55
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020083/
DO  - 10.1051/m2an/2020083
LA  - en
ID  - M2AN_2021__55_2_429_0
ER  - 
%0 Journal Article
%A Claeys, Xavier
%T Non-local variant of the optimised Schwarz method for arbitrary non-overlapping subdomain partitions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 429-448
%V 55
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020083/
%R 10.1051/m2an/2020083
%G en
%F M2AN_2021__55_2_429_0
Claeys, Xavier. Non-local variant of the optimised Schwarz method for arbitrary non-overlapping subdomain partitions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 429-448. doi: 10.1051/m2an/2020083

[1] G. Allaire and S. M. Kaber, Numerical linear algebra. In: Vol. 55 of Texts in Applied Mathematics. Springer, New York (2008). | MR | Zbl | DOI

[2] X. Antoine and C. Geuzaine, Optimized Schwarz domain decomposition methods for scalar and vector Helmholtz equations. In: Modern Solvers for Helmholtz Problems. Birkhäuser/Springer, Basel (2017) 189–213. | MR | DOI

[3] X. Antoine, Y. Boubendir and C. Geuzaine, A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. J. Comput. Phys. 231 (2012) 262–280. | MR | Zbl | DOI

[4] X. Antoine, C. Geuzaine and A. Modave, Corner treatment for high-order local absorbing boundary conditions in high-frequency acoustic scattering. J. Comput. Phys. 401 (2020). | MR

[5] X. Antoine, C. Geuzaine, A. Modave and A. Royer, A non-overlapping domain decomposition method with high-order transmission conditions and cross-point treatment for Helmholtz problems. Comput. Methods Appl. Mech. Eng. 368 (2020). | MR

[6] M. Bebendorf, A means to efficiently solve elliptic boundary value problems. In: Vol. 63 of Hierarchical Matrices. Lecture Notes in Computational Science and Engineering. Springer-Verlag, Berlin (2008). | MR | Zbl

[7] A. Bendali and Y. Boubendir, Non-overlapping domain decomposition method for a nodal finite element method. Numer. Math. 103 (2006) 515–537. | MR | Zbl | DOI

[8] S. Börm, Efficient numerical methods for non-local operators: 2 -matrix compression, algorithms and analysis. In: Vol. 14 of . European Mathematical Society (EMS), Zürich (2010). | MR | Zbl | DOI

[9] Y. Boubendir, Techniques de Décomposition de Domaine et Méthodes d’Equations Intégrales. Ph.D. thesis, INSA of Toulouse (2002).

[10] X. Claeys, A single trace integral formulation of the second kind for acoustic scattering. Technical Report 2011-14, Seminar for Applied Mathematics, ETH Zürich, Switzerland (2011).

[11] X. Claeys, Quasi-local multitrace boundary integral formulations. Numer. Methods Part. Differ. Equ. 31 (2015) 2043–2062. | MR | DOI

[12] X. Claeys and R. Hiptmair, Electromagnetic scattering at composite objects: a novel multi-trace boundary integral formulation. ESAIM:M2AN 46 (2012) 1421–1445. | MR | Zbl | Numdam | DOI

[13] X. Claeys and R. Hiptmair, Integral equations on multi-screens. Integral Equ. Oper. Theory 77 (2013) 167–197. | MR | Zbl | DOI

[14] X. Claeys and R. Hiptmair, Multi-trace boundary integral formulation for acoustic scattering by composite structures. Comm. Pure Appl. Math. 66 (2013) 1163–1201. | MR | Zbl | DOI

[15] X. Claeys and E. Parolin, Robust treatment of cross points in Optimized Schwarz Methods. Preprint (2020). | arXiv | MR

[16] X. Claeys, R. Hiptmair and C. Jerez-Hanckes, Multitrace boundary integral equations. In: Direct and Inverse Problems in Wave Propagation and Applications. Selected Papers of the Workshop on Wave Propagation and Scattering, Inverse Problems and Applications in Energy and the Environment, Linz, Austria, November 21–25, 2011. de Gruyter, Berlin (2013) 51–100. | MR | Zbl

[17] X. Claeys, R. Hiptmair and E. Spindler, A second-kind Galerkin boundary element method for scattering at composite objects. BIT 55 (2015) 33–57. | MR | DOI

[18] X. Claeys, R. Hiptmair and E. Spindler, Second kind boundary integral equation for multi-subdomain diffusion problems. Adv. Comput. Math. 43 (2017) 1075–1101. | MR | DOI

[19] X. Claeys, R. Hiptmair and E. Spindler, Second-kind boundary integral equations for electromagnetic scattering at composite objects. Comput. Math. Appl. 74 (2017) 2650–2670. | MR | DOI

[20] X. Claeys, B. Thierry and F. Collino, Integral equation based optimized schwarz method for electromagnetics. In: Domain Decomposition Methods in Science and Engineering XXIV, edited by P. E. Bjørstad, S. C. Brenner, L. Halpern, H. H. Kim, R. Kornhuber, T. Rahman and O. B. Widlund. Springer International Publishing, Cham (2018) 187–194. | MR | DOI

[21] F. Collino, S. Ghanemi and P. Joly, Domain decomposition method for harmonic wave propagation: a general presentation. Comput. Methods Appl. Mech. Engrg. 184 (2000) 171–211. | MR | Zbl | DOI

[22] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, 2nd edition. In: Vol. 93 of Applied Mathematical Sciences. Springer, New York (2013). | MR | Zbl

[23] D. Colton and R. Kress, Integral equation methods in scattering theory. In: Vol. 72 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2013). | MR | Zbl

[24] M. Costabel, Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19 (1988) 613–626. | MR | Zbl | DOI

[25] E. Darve, The fast multipole method: numerical implementation. J. Comput. Phys. 160 (2000) 195–240. | MR | Zbl | DOI

[26] B. Després, Décomposition de domaine et problème de Helmholtz. C. R. Acad. Sci. Paris Sér. I Math. 311 (1990) 313–316. | MR | Zbl

[27] B. Després, Domain decomposition method and the Helmholtz problem. In: Mathematical and Numerical Aspects of Wave Propagation Phenomena (Strasbourg, 1991). SIAM, Philadelphia, PA (1991) 44–52. | MR

[28] B. Després, Méthodes de décomposition de domaine pour les problèmes de propagation d’ondes en régime harmonique. Thèse, Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt, 1991, Université de Paris IX (Dauphine), Paris (1991). | MR | Zbl

[29] B. Després, Domain decomposition method and the Helmholtz problem. II. In: Second International Conference on Mathematical and Numerical Aspects of Wave Propagation (Newark, DE, 1993). SIAM, Philadelphia, PA (1993) 197–206. | MR | Zbl

[30] B. Després, A. Nicolopoulos and B. Thierry, Corners and stable optimized domain decomposition methods for the Helmholtz problem. Preprint (2020). | HAL | MR

[31] V. Dolean, P. Jolivet and F. Nataf, An Introduction to Domain Decomposition Methods. Algorithms, Theory, and Parallel Implementation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2015). | MR | DOI

[32] M. El Bouajaji, X. Antoine and C. Geuzaine, Approximate local magnetic-to-electric surface operators for time-harmonic Maxwell’s equations. J. Comput. Phys. 279 (2014) 241–260. | MR | DOI

[33] M. El Bouajaji, B. Thierry, X. Antoine and C. Geuzaine, A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell’s equations. J. Comput. Phys. 294 (2015) 38–57. | MR | DOI

[34] M. Gander and F. Kwok, On the applicability of Lions’ energy estimates in the analysis of discrete optimized Schwarz methods with cross points. In: Vol. 91 of Domain Decomposition Methods in Science and Engineering. Springer, Heidelberg (2013) 475–483. | MR | DOI

[35] M. Gander and K. Santugini, Cross-points in domain decomposition methods with a finite element discretization. Electron. Trans. Numer. Anal. 45 (2016) 219–240. | MR

[36] M. J. Gander and H. Zhang, A class of iterative solvers for the Helmholtz equation: factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods. SIAM Rev. 61 (2019) 3–76. | MR | DOI

[37] L. Greengard and J.-Y. Lee, Stable and accurate integral equation methods for scattering problems with multiple material interfaces in two dimensions. J. Comput. Phys. 231 (2012) 2389–2395. | MR | Zbl | DOI

[38] L. Greengard and V. Rokhlin, A new version of the fast multipole method for the Laplace equation in three dimensions. In: Vol. 6 of Acta Numer. Cambridge Univ. Press, Cambridge (1997) 229–269. | MR | Zbl | DOI

[39] W. Hackbusch, Hierarchical matrices: algorithms and analysis. In: Vol. 49 of Springer Series in Computational Mathematics. Springer, Heidelberg (2015). | MR | Zbl

[40] U. Langer and O. Steinbach, Boundary element tearing and interconnecting methods. Computing 71 (2003) 205–228. | MR | Zbl | DOI

[41] M. Lecouvez, Iterative methods for domain decomposition without overlap with exponential convergence for the Helmholtz equation. Ph.D thesis, Ecole Polytechnique (2015).

[42] M. Lecouvez, B. Stupfel, P. Joly and F. Collino, Quasi-local transmission conditions for non-overlapping domain decomposition methods for the Helmholtz equation. C. R. Phys. 15 (2014) 403–414. | DOI

[43] R. Leis, Initial-Boundary Value Problems in Mathematical Physics, edited by B. G. Teubner, Stuttgart. John Wiley & Sons Ltd, Chichester (1986). | MR | Zbl

[44] P.-L. Lions, On the Schwarz alternating method III. A variant for nonoverlapping subdomains. In: Vol. 22 of Third International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM (1989). | MR | Zbl

[45] W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). | MR | Zbl

[46] A. Moiola and E. A. Spence, Is the Helmholtz equation really sign-indefinite? SIAM Rev. 56 (2014) 274–312. | MR | Zbl | DOI

[47] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST handbook of mathematical functions. In: U.S. Department of Commerce, National Institute of Standards and Technology. Cambridge University Press, Cambridge, Washington, DC (2010). | MR | Zbl

[48] C. Pechstein, Finite and boundary element tearing and interconnecting solvers for multiscale problems. In: Vol. 90 of Lecture Notes in Computational Science and Engineering. Springer, Heidelberg (2013). | MR | Zbl | DOI

[49] Z. Peng, K.-H. Lim and J.-F. Lee, Computations of electromagnetic wave scattering from penetrable composite targets using a surface integral equation method with multiple traces. IEEE Trans. Antennas Propag. 61 (2013) 256–270. | MR | DOI

[50] Z. Peng, K.-H. Lim and J.-F. Lee, A boundary integral equation domain decomposition method for electromagnetic scattering from large and deep cavities. (English summary). J. Comput. Phys. 280 (2015) 626–642. | MR | Zbl | DOI

[51] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition. SIAM Society for Industrial and Applied Mathematics, Philadelphia, PA (2003). | MR | Zbl

[52] S. Sauter and C. Schwab, Boundary element methods. In: Vol. 39 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2011). | MR | Zbl | DOI

[53] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements. Springer, New York (2008). | MR | Zbl | DOI

[54] A. Toselli and O. Widlund, Domain decomposition methods – algorithms and theory. In: Vol. 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2005). | MR | Zbl | DOI

[55] A. Vion and C. Geuzaine, Improved sweeping preconditioners for domain decomposition algorithms applied to time-harmonic Helmholtz and Maxwell problems. ESAIM: Proc. Surv. 61 (2018) 93–111. | MR | Zbl | DOI

[56] T. Von Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci. 11 (1989) 185–213. | MR | Zbl | DOI

Cité par Sources :