We continue the work of Camano et al. [SIAM J. Math. Anal. 49 (2017) 4376–4401] on electromagnetic Steklov eigenvalues. The authors recognized that in general the eigenvalues do not correspond to the spectrum of a compact operator and hence proposed a modified eigenvalue problem with the desired properties. The present article considers the original and the modified electromagnetic Steklov eigenvalue problem. We cast the problems as eigenvalue problem for a holomorphic operator function A(⋅). We construct a “test function operator function” T(⋅) so that A(λ) is weakly T(λ)-coercive for all suitable λ, i.e. T(λ)*A(λ) is a compact perturbation of a coercive operator. The construction of T(⋅) relies on a suitable decomposition of the function space into subspaces and an apt sign change on each subspace. For the approximation analysis, we apply the framework of T-compatible Galerkin approximations. For the modified problem, we prove that convenient commuting projection operators imply T-compatibility and hence convergence. For the original problem, we require the projection operators to satisfy an additional commutator property which concerns the tangential trace. The existence and construction of such projection operators remain open questions.
Keywords: Steklov eigenvalues, nondestructive testing, T-coercivity
@article{M2AN_2021__55_1_57_0,
author = {Halla, Martin},
title = {Electromagnetic {Steklov} eigenvalues: approximation analysis},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {57--76},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {1},
doi = {10.1051/m2an/2020075},
mrnumber = {4216830},
zbl = {1473.35164},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2020075/}
}
TY - JOUR AU - Halla, Martin TI - Electromagnetic Steklov eigenvalues: approximation analysis JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - 57 EP - 76 VL - 55 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2020075/ DO - 10.1051/m2an/2020075 LA - en ID - M2AN_2021__55_1_57_0 ER -
%0 Journal Article %A Halla, Martin %T Electromagnetic Steklov eigenvalues: approximation analysis %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P 57-76 %V 55 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2020075/ %R 10.1051/m2an/2020075 %G en %F M2AN_2021__55_1_57_0
Halla, Martin. Electromagnetic Steklov eigenvalues: approximation analysis. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 57-76. doi: 10.1051/m2an/2020075
, , and , Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. | MR | Zbl | DOI
, and , Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.) 47 (2010) 281–354. | MR | Zbl | DOI
and , Eigenvalue problems. In: Vol. 2 of Finite Element Methods (Part 1), Handbook of Numerical Analysis. Elsevier (1991) 641–787. | MR | Zbl | DOI
, and , On uniqueness for time harmonic anisotropic Maxwell’s equations with piecewise regular coefficients. Math. Models Methods Appl. Sci. 22 (2012) 1250036. | MR | Zbl | DOI
, Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. | MR | Zbl | DOI
, and , Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math. 234 (2010) 1912–1919. | MR | Zbl | DOI
, Remarks on the discretization of some noncoercive operator with applications to heterogeneous maxwell equations. SIAM J. Numer. Anal. 43 (2005) 1–18. | MR | Zbl | DOI
, and , On traces for in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867. | MR | Zbl | DOI
and , Qualitative methods in inverse scattering theory. In: An introduction: Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin-Heidelberg (2006). | MR | Zbl
, , and , Stekloff eigenvalues in inverse scattering. SIAM J. Appl. Math. 76 (2016) 1737–1763. | MR | Zbl | DOI
, and , Inverse scattering theory and transmission eigenvalues. In: Vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2016). | MR | Zbl
, and , Electromagnetic Stekloff eigenvalues in inverse scattering. SIAM J. Math. Anal. 49 (2017) 4376–4401. | MR | Zbl | DOI
, A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci. 12 (1990) 365–368. | MR | Zbl | DOI
, Elliptic boundary value problems on corner domains. In: Vol. 1341 of Smoothness and Asymptotics of Solutions. Lecture Notes in Mathematics Springer, Berlin-Heidelberg (1988). | MR | Zbl
and , Mollification in strongly Lipschitz domains with application to continuous and discrete de Rham complexes. Comput. Methods Appl. Math. 16 (2016) 51–75. | MR | Zbl | DOI
, Electromagnetic Stekloff eigenvalues: existence and behavior in the selfadjoint case. Preprint (2019). | arXiv | Zbl
, Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility. Preprint (2019). | arXiv | MR | Zbl
, Approximation in eigenvalue problems for holomorphic Fredholm operator functions. I. Numer. Funct. Anal. Optim. 17 (1996) 365–387. | MR | Zbl | DOI
, Approximation in eigenvalue problems for holomorphic Fredholm operator functions. II. (Convergence rate). Numer. Funct. Anal. Optim. 17 (1996) 389–408. | MR | Zbl | DOI
and , Differential equations with operator coefficients with applications to boundary value problems for partial differential equations. Springer Monographs in Mathematics, Springer, Berlin-Heidelberg (1999). | MR | Zbl
Cité par Sources :





