Well-posedness and numerical approximation of a fractional diffusion equation with a nonlinear variable order
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 171-207

We prove well-posedness and regularity of solutions to a fractional diffusion porous media equation with a variable fractional order that may depend on the unknown solution. We present a linearly implicit time-stepping method to linearize and discretize the equation in time, and present rigorous analysis for the convergence of numerical solutions based on proved regularity results.

DOI : 10.1051/m2an/2020072
Classification : 65M15, 65M60, 65M12, 45K05
Keywords: Fractional diffusion equation, variable order, nonlinear, well-posedness, regularity, numerical approximation, convolution quadrature, convergence
@article{M2AN_2021__55_1_171_0,
     author = {Li, Buyang and Wang, Hong and Wang, Jilu},
     title = {Well-posedness and numerical approximation of a fractional diffusion equation with a nonlinear variable order},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {171--207},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {1},
     doi = {10.1051/m2an/2020072},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020072/}
}
TY  - JOUR
AU  - Li, Buyang
AU  - Wang, Hong
AU  - Wang, Jilu
TI  - Well-posedness and numerical approximation of a fractional diffusion equation with a nonlinear variable order
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 171
EP  - 207
VL  - 55
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020072/
DO  - 10.1051/m2an/2020072
LA  - en
ID  - M2AN_2021__55_1_171_0
ER  - 
%0 Journal Article
%A Li, Buyang
%A Wang, Hong
%A Wang, Jilu
%T Well-posedness and numerical approximation of a fractional diffusion equation with a nonlinear variable order
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 171-207
%V 55
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020072/
%R 10.1051/m2an/2020072
%G en
%F M2AN_2021__55_1_171_0
Li, Buyang; Wang, Hong; Wang, Jilu. Well-posedness and numerical approximation of a fractional diffusion equation with a nonlinear variable order. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 171-207. doi: 10.1051/m2an/2020072

[1] G. Akrivis, B. Li and C. Lubich, Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations. Math. Comput. 86 (2017) 1527–1552. | MR | DOI

[2] L. Banjai and M. López-Fernández, Efficient high order algorithms for fractional integrals and fractional differential equations. Numer. Math. 141 (2019) 289–317. | MR | DOI

[3] P. Baveye, P. Vandevivere, B. L. Hoyle, P. C. Deleo and D. S. De Lozada, Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials. Crit. Rev. Environ. Sci. Technol. 28 (2006) 123–191. | DOI

[4] J. Bear, Dynamics of Fluids in Porous Media. Elsevier, New York (1972).

[5] L. C. Becker, Resolvents and solutions of weakly singular linear Volterra integral equations. Nonlinear Anal. 74 (2011) 1892–1912. | MR | Zbl | DOI

[6] D. Benson, R. Schumer, M. M. Meerschaert and S. W. Wheatcraft, Fractional dispersion, Lévy motions, and the MADE tracer tests. Transp. Porous Media 42 (2001) 211–240. | MR | DOI

[7] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction. Springer, Berlin-Heidleberg (1976). | MR | Zbl

[8] V. Bogachev, Measure Theory I, Springer, Berlin-Heidelberg (1978). | Zbl

[9] T. A. Burton and D. P. Dwiggins, Resolvents of integral equations with continuous kernels. Nonlinear Stud. 18 (2011) 293–305. | MR | Zbl

[10] C. Cheng, V. Thomée and L. Wahlbin, Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel. Math. Comput. 58 (1992) 587–602. | MR | Zbl | DOI

[11] E. Cuesta, C. Lubich and C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75 (2006) 673–696. | MR | Zbl | DOI

[12] W. Deng, Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47 (2008) 204–226. | MR | Zbl | DOI

[13] P. Embrechts and M. Maejima, Selfsimilar Processes. In: Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ (2002). | MR | Zbl

[14] L. C. Evans, Partial Differential Equations, 2nd edition. In: Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2010). | MR | Zbl

[15] L. Gandossi and U. V. Estorff, An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production. Scientific and Technical Research Reports. Joint Research Centre of the European Commission; Publications Office of the European Union (2015). . DOI: . | DOI

[16] L. Grafakos, Classical Fourier Analysis, 3rd edition. In: Vol. 249 of Graduate Texts in Mathematics. Springer, New York (2014). | MR | Zbl

[17] B. Jin, R. Lazarov and Z. Zhou, Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38 (2016) A146–A170.

[18] B. Jin, B. Li and Z. Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39 (2017) A3129–A3152.

[19] B. Jin, B. Li and Z. Zhou, An analysis of the Crank-Nicolson method for subdiffusion. IMA J. Numer. Anal. 38 (2018) 518–541.

[20] B. Jin, B. Li and Z. Zhou, Subdiffusion with a time-dependent coefficient: analysis and numerical solution. Math. Comput. 88 (2019) 2157–2186.

[21] Y. Kian, E. Soccorsi and M. Yamamoto, Finite difference/spectral approximations for the time-fractional diffusion equation. Ann. Henri Poincaré 19 (2018) 3955–3881. | MR

[22] G. E. King, Hydraulic fracturing 101: What every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas and oil wells. Society of Petroleum Engineers, SPE 152596 (2012).

[23] N. Kopteva, Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88 (2019) 2135–2155. | MR | DOI

[24] A. Kubica and M. Yamamoto, Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients. Fract. Calc. Appl. Anal. 21 (2018) 276–311. | MR | DOI

[25] T. Lee, L. Bocquet and B. Coasne, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. Nat. Commun. 29 (2016) 11890.

[26] L. Li and J.-G. Liu, A discretization of caputo derivatives with application to time fractional SDEs and gradient flows. SIAM J. Numer. Anal. 57 (2019) 2095–2120. | MR | DOI

[27] H. Liao, W. Mclean and J. Zhang, A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57 (2019) 218–237. | MR | DOI

[28] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225 (2007) 1533–1552. | MR | Zbl | DOI

[29] C. F. Lorenzo and T. T. Hartley, Variable order and distributed order fractional operators. Nonlinear Dyn. 29 (2002) 57–98.

[30] C. Lubich, Convolution quadrature and discretized operational calculus. I and II. Numer. Math. 52 (1988) 129–145 and 413–425. | MR | Zbl | DOI

[31] C. Lubich, Convolution quadrature revisited. BIT 44 (2004) 503–514. | MR | Zbl | DOI

[32] C. Lubich, I. H. Sloan and V. Thomée, Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term.Math. Comput. 65 (1996) 1–17. | MR | Zbl | DOI

[33] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, 3rd edition, Birkhäuser Verlag, Basel (1995). | MR | Zbl

[34] M. Luskin and R. Rannacher, On the smoothing property of the Galerkin method for parabolic equations. SIAM J. Numer. Anal. 19 (1982) 93–113. | MR | Zbl | DOI

[35] C. Lv and C. Xu, Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38 (2016) A2699–A2724.

[36] W. Mclean and K. Mustapha, Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algorithms 52 (2009) 69–88. | MR | Zbl | DOI

[37] M. M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus. In: De Gruyter Studies in Mathematics (2011). | MR | Zbl

[38] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000) 1–77. | MR | Zbl | DOI

[39] R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37 (2004) R161–R208. | MR | Zbl | DOI

[40] K. Mustapha, Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 130 (2015) 497–516. | MR | DOI

[41] K. Mustapha, FEM for time-fractional diffusion equations, novel optimal error analyses. Math. Comput. 87 (2018) 2259–2272. | MR | DOI

[42] K. Mustapha and W. Mclean, Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algorithms 56 (2011) 159–184. | MR | Zbl | DOI

[43] K. Mustapha and W. Mclean, Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation. IMA J. Numer. Anal. 32 (2011) 906–925. | MR | Zbl | DOI

[44] K. Mustapha and D. Schötzau, Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equation. IMA J. Numer. Anal. 34 (2013) 1426–1446.

[45] K. Mustapha, B. Abdallah and K. M. Furati, A discontinuous Petrov-Galerkin method for time-fractional diffusion equations. SIAM J. Numer. Anal. 52 (2014) 2512–2529.

[46] E. M. Ouhabaz, Gaussian estimates and holomorphy of semigroups. Proc. Amer. Math. Soc. 123 (1995) 1465–1474.

[47] R. Schumer, D. A. Benson, M. M. Meerschaert and B. Baeumer, Fractal mobile/immobile solute transport. Water Resour. Res. 39 (2003) 1–12.

[48] M. Stynes, E. O’Riordan and J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55 (2017) 1057–1079. | MR | DOI

[49] Z.-Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56 (2006) 193–209. | MR | Zbl | DOI

[50] H. Sun, W. Chen and Y. Chen, Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A: Stat. Mech. Appl. 388 (2009) 4586–4592. | DOI

[51] H. Sun, A. Chang, Y. Zhang and W. Chen, A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22 (2019) 27–59. | MR | Zbl | DOI

[52] J. Sun, D. Nie and W. Deng, Error estimates for backward fractional Feynman-Kac equation with non-smooth initial data. J. Sci. Comput. 84 (2020) 1–23. | MR | Zbl

[53] H. Wang and X. Zheng, Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. App. 475 (2019) 1778–1802.

[54] L. Weis, A new approach to maximal L p -regularity, edited by B. Herrenalb. In: Vol. 215 of Lecture Notes in Pure and Applied Mathematics. Evolution Equations and their Applications in Physical and Life Sciences. Dekker, New York (2001) 195–214. | MR | Zbl

[55] Y. Xian, M. Jin, H. Zhan and Y. Liu, Reactive transport of nutrients and bioclogging during dynamic disconnection process of stream and groundwater. Water Resour. Res. 55 (2019) 3882–3903. | DOI

[56] Y. Zhang, C. Green and B. Baeumer, Linking aquifer spatial properties and non-Fickian transport in mobile–immobile like alluvial settings. J. Hydrol. 512 (2014) 315–331. | DOI

Cité par Sources :