Nonlocal pagerank
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 77-97

In this work we introduce and study a nonlocal version of the PageRank. In our approach, the random walker explores the graph using longer excursions than just moving between neighboring nodes. As a result, the corresponding ranking of the nodes, which takes into account a long-range interaction between them, does not exhibit concentration phenomena typical of spectral rankings which take into account just local interactions. We show that the predictive value of the rankings obtained using our proposals is considerably improved on different real world problems.

DOI : 10.1051/m2an/2020071
Classification : 05C82, 68R10, 94C15, 60J20
Keywords: Complex network, nonlocal dynamics, Markov chain, Perron–Frobenius
@article{M2AN_2021__55_1_77_0,
     author = {Cipolla, Stefano and Durastante, Fabio and Tudisco, Francesco},
     title = {Nonlocal pagerank},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {77--97},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {1},
     doi = {10.1051/m2an/2020071},
     mrnumber = {4216832},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020071/}
}
TY  - JOUR
AU  - Cipolla, Stefano
AU  - Durastante, Fabio
AU  - Tudisco, Francesco
TI  - Nonlocal pagerank
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 77
EP  - 97
VL  - 55
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020071/
DO  - 10.1051/m2an/2020071
LA  - en
ID  - M2AN_2021__55_1_77_0
ER  - 
%0 Journal Article
%A Cipolla, Stefano
%A Durastante, Fabio
%A Tudisco, Francesco
%T Nonlocal pagerank
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 77-97
%V 55
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020071/
%R 10.1051/m2an/2020071
%G en
%F M2AN_2021__55_1_77_0
Cipolla, Stefano; Durastante, Fabio; Tudisco, Francesco. Nonlocal pagerank. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 77-97. doi: 10.1051/m2an/2020071

[1] M. Al Hasan and M. J. Zaki, A survey of link prediction in social networks. In: Social Network Data Analytics. Springer, Boston (2011) 243–275. | MR | DOI

[2] F. Arrigo, P. Grindrod, D. J. Higham and V. Noferini, Non-backtracking walk centrality for directed networks. J. Complex Networks 6 (2017) 54–78. | MR | DOI

[3] F. Arrigo, D. J. Higham and F. Tudisco, A framework for second order eigenvector centralities and clustering coefficients. Proc. R. Soc. A 476 (2020) 20190724. | MR | DOI

[4] A. R. Benson, Three hypergraph eigenvector centralities. SIAM J. Math. Data Sci. 1 (2019) 293–312. | MR | DOI

[5] A. R. Benson, D. F. Gleich and J. Leskovec, Higher-order organization of complex networks. Science 353 (2016) 163–166. | DOI

[6] A. R. Benson, D. F. Gleich and L.-H. Lim, The spacey random walk: a stochastic process for higher-order data. SIAM Rev. 59 (2017) 321–345. | MR | DOI

[7] M. Benzi and C. Klymko, Total communicability as a centrality measure. J. Complex Networks 1 (2013) 124–149. | DOI

[8] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. In: Vol. 9 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1994). | MR | Zbl

[9] C. Brezinski and M. Redivo-Zaglia, The PageRank vector: properties, computation, approximation, and acceleration. SIAM J. Matrix Anal. Appl. 28 (2006) 551–575. | MR | Zbl | DOI

[10] A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance, D. Papo, F. Del Pozo and S. Boccaletti, Emergence of network features from multiplexity. Sci. Rep. 3 (2013) 1344. | DOI

[11] T.-H. H. Chan, A. Louis, Z. G. Tang and C. Zhang, Spectral properties of hypergraph Laplacian and approximation algorithms. J. ACM 65 (2018) 1–48. | MR | DOI

[12] P. Chebotarev, A class of graph-geodetic distances generalizing the shortest-path and the resistance distances. Disc. Appl. Math. 159 (2011) 295–302. | MR | Zbl | DOI

[13] P. Chebotarev, The graph bottleneck identity. Adv. Appl. Math. 47 (2011) 403–413. | MR | Zbl | DOI

[14] G. E. Cho and C. D. Meyer, Comparison of perturbation bounds for the stationary distribution of a Markov chain. Linear Algebra App. 335 (2001) 137–150. | MR | Zbl | DOI

[15] S. Cipolla, C. Di Fiore and F. Tudisco, Euler-Richardson method preconditioned by weakly stochastic matrix algebras: a potential contribution to Pagerank computation. Electron. J. Linear Algebra 32 (2017) 254–272. | MR | DOI

[16] S. Cipolla, M. Redivo-Zaglia and F. Tudisco, Extrapolation methods for fixed-point multilinear PageRank computations. Numer. Linear Algebra App. 27 (2020) e2280. | MR | DOI

[17] S. Cipolla, M. Redivo-Zaglia and F. Tudisco, Shifted and extrapolated power methods for tensor p -eigenpairs. Electron. Trans. Numer. Anal. 53 (2020) 1–27. | MR | DOI

[18] R. Cohen and S. Havlin, Complex Networks: Structure, Robustness and Function. Cambridge University Press (2010). | Zbl | DOI

[19] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38 (2011) 1–25. | MR | DOI

[20] M. De Domenico, A. Solé-Ribalta, S. Gómez and A. Arenas, Navigability of interconnected networks under random failures. Proc. Natl. Acad. Sci. 111 (2014) 8351–8356. | MR | DOI

[21] G. M. Del Corso, A. Gulli and F. Romani, Fast PageRank computation via a sparse linear system. Internet Math. 2 (2005) 251–273. | MR | Zbl | DOI

[22] S. Derrible, Network centrality of metro systems. PloS one 7 (2012) e40575. | DOI

[23] I. S. Duff, R. G. Grimes and J. G. Lewis, Sparse matrix test problems. ACM Trans. Math. Softw. 15 (1989) 1–14. | MR | Zbl | DOI

[24] E. Estrada, Path Laplacian matrices: introduction and application to the analysis of consensus in networks. Linear Algebra App. 436 (2012) 3373–3391. | MR | Zbl | DOI

[25] E. Estrada, The Structure of Complex Networks: Theory and Applications. Oxford University Press (2012). | Zbl

[26] E. Estrada, J.-C. Delvenne, N. Hatano, J. L. Mateos, R. Metzler, A. P. Riascos and M. T. Schaub, Random multi-hopper model: super-fast random walks on graphs. J. Complex Networks 6 (2017) 382–403. | MR | DOI

[27] E. Estrada, E. Hameed, N. Hatano and M. Langer, Path Laplacian operators and superdiffusive processes on graphs. I. One-dimensional case. Linear Algebra App. 523 (2017) 307–334. | MR | DOI

[28] E. Estrada, E. Hameed, M. Langer and A. Puchalska, Path Laplacian operators and superdiffusive processes on graphs. II. Two-dimensional lattice. Linear Algebra App. 555 (2018) 373–397. | MR | DOI

[29] R. Fagin, R. Kumar and D. Sivakumar, Comparing top k lists. SIAM J. Disc. Math. 17 (2003) 134–160. | MR | Zbl | DOI

[30] D. Fasino and F. Tudisco, A modularity based spectral method for simultaneous community and anti-community detection. Linear Algebra App. 542 (2018) 605–623. | MR | DOI

[31] D. Fasino and F. Tudisco, Ergodicity coefficients for higher-order stochastic processes. SIAM J. Math. Data Sci. 2 (2020) 740–769. | MR | DOI

[32] R. W. Floyd, Algorithm 97: shortest path. Commun. ACM 5 (1962) 345. | DOI

[33] M. Girvan and M. E. Newman, Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99 (2002) 7821–7826. | MR | Zbl | DOI

[34] G. H. Golub and C. Greif, An Arnoldi-type algorithm for computing PageRank. BIT Numer. Math. 46 (2006) 759–771. | MR | Zbl | DOI

[35] D. J. Higham, A matrix perturbation view of the small world phenomenon. SIAM Rev. 49 (2007) 91–108. | MR | Zbl | DOI

[36] M. Holtgrewe, P. Sanders and C. Schulz, Engineering a scalable high quality graph partitioner. In: 2010 IEEE International Symposium on Parallel Distributed Processing (IPDPS) 2010 1–12.

[37] D. B. Johnson, Efficient algorithms for shortest paths in sparse networks. J. ACM 24 (1977) 1–13. | MR | Zbl | DOI

[38] S. Kirkland, On a question concerning condition numbers for Markov chains. SIAM J. Matrix Anal. App. 23 (2002) 1109–1119. | MR | Zbl | DOI

[39] G. Li, S. D. S. Reis, A. A. Moreira, S. Havlin, H.E. Stanley and J. S. Andrade, Towards design principles for optimal transport networks. Phys. Rev. Lett. 104 (2010) 018701. | DOI

[40] P. Li, I. Chien and O. Milenkovic, Optimizing generalized pagerank methods for seed-expansion community detection, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. D’Alché Buc, E. Fox and R. Garnett. In: Vol. 32 of Advances in Neural Information Processing Systems. Curran Associates, Inc. (2019) 11710–11721.

[41] D. Liben-Nowell and J. Kleinberg, The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58 (2007) 1019–1031. | DOI

[42] X. Liu, G. Strang and S. Ott, Localized eigenvectors from widely spaced matrix modifications. SIAM J. Disc. Math. 16 (2003) 479–498. | MR | Zbl | DOI

[43] T. Martin, X. Zhang and M. E. J. Newman, Localization and centrality in networks. Phys. Rev. E 90 (2014) 052808. | DOI

[44] S. Massei, M. Mazza and L. Robol, Fast solvers for two-dimensional fractional diffusion equations using rank structured matrices. SIAM J. Sci. Comput. 41 (2019) A2627–A2656. | MR | DOI

[45] M. Neumann and J. Xu, Improved bounds for a condition number for Markov chains. Linear Algebra App. 386 (2004) 225–241. | MR | Zbl | DOI

[46] M. E. J. Newman, Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74 (2006) 036104. | MR | DOI

[47] Office of Railand Road. Estimate of London’s tube station usage. https://dataportal.orr.gov.uk/statistics/usage/estimates-of-station-usage/.

[48] L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank citation ranking: bringing order to the web. Technical report, Stanford InfoLab (1999).

[49] M. Paton, K. Akartunali and D. J. Higham, Centrality analysis for modified lattices. SIAM J. Matrix Anal. App. 38 (2017) 1055–1073. | MR | DOI

[50] S. Pozza and F. Tudisco, On the stability of network indices defined by means of matrix functions. SIAM J. Matrix Anal. App. 39 (2018) 1521–1546. | MR | Zbl | DOI

[51] A. P. Riascos and J. L. Mateos, Long-range navigation on complex networks using Lévy random walks. Phys. Rev. E 86 (2012) 056110. | DOI

[52] M. R. Roberson and D. Ben Avraham, Kleinberg navigation in fractal small-world networks. Phys. Rev. E 74 (2006) 017101. | DOI

[53] M. P. Rombach, M. A. Porter, J. H. Fowler and P. J. Mucha, Core-periphery structure in networks. SIAM J. Appl. Math. 74 (2014) 167–190. | MR | Zbl | DOI

[54] R. A. Rossi and N. K. Ahmed, The network data repository with interactive graph analytics and visualization. AAAI (2015).

[55] E. Seneta, Perturbation of the stationary distribution measured by ergodicity coefficients. Adv. Appl. Probab. 20 (1988) 228–230. | MR | Zbl | DOI

[56] K. J. Sharkey, Localization of eigenvector centrality in networks with a cut vertex. Phys. Rev. E 99 (2019) 012315. | MR | DOI

[57] B. Stabler, H. Bar-Gera and E. Sall, Transportation networks for research. https://github.com/bstabler/TransportationNetworks

[58] W. M. To, Centrality of an urban rail system. Urban Rail Transit 1 (2015) 249–256. | DOI

[59] F. Tudisco, A note on certain ergodicity coeflcients. Spec. Matrices 3 (2015). | MR | Zbl

[60] F. Tudisco and D. J. Higham, A nonlinear spectral method for core–periphery detection in networks. SIAM J. Math. Data Sci. 1 (2019) 269–292. | MR | Zbl | DOI

[61] A. Van Heukelum, G. Barkema and R. Bisseling, DNA electrophoresis studied with the cage model. J. Comput. Phys. 180 (2002) 313–326. | Zbl | DOI

[62] S. Warshall, A theorem on boolean matrices. J. ACM 9 (1962) 11–12. | MR | Zbl | DOI

[63] T. Weng, M. Small, J. Zhang and P. Hui, Lévy walk navigation in complex networks: a distinct relation between optimal transport exponent and network dimension. Sci. Rep. 5 (2015) 1–9. | DOI

Cité par Sources :