Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S879-S907

We study the problem - Δ u = f , where f has a point-singularity. In particular, we are interested in f = δ$$, a Dirac delta with support in x0, but singularities of the form f ~ |xx0|−s are also considered. We prove the stability of the Galerkin projection on graded meshes in weighted spaces, with weights given by powers of the distance to x0. We also recover optimal rates of convergence for the finite element method on these graded meshes. Our approach is general and holds both in two and three dimensions. Numerical experiments are shown that verify our results, and lead to interesting observations.

DOI : 10.1051/m2an/2020065
Classification : 35J05, 65N30, 65N12, 65N15, 65Y20
Keywords: Weighted Sobolev spaces, $$ error estimates, finite elements
@article{M2AN_2021__55_S1_S879_0,
     author = {Ojea, Ignacio},
     title = {Optimal \protect\emph{a priori} error estimates in weighted {Sobolev} spaces for the {Poisson} problem with singular sources},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S879--S907},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020065},
     zbl = {1473.35126},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020065/}
}
TY  - JOUR
AU  - Ojea, Ignacio
TI  - Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S879
EP  - S907
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020065/
DO  - 10.1051/m2an/2020065
LA  - en
ID  - M2AN_2021__55_S1_S879_0
ER  - 
%0 Journal Article
%A Ojea, Ignacio
%T Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S879-S907
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020065/
%R 10.1051/m2an/2020065
%G en
%F M2AN_2021__55_S1_S879_0
Ojea, Ignacio. Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S879-S907. doi: 10.1051/m2an/2020065

[1] J. P. Agnelli, E. M. Garau and P. Morin, A posteriori error estimates for elliptic problems with dirac measure terms in weighted spaces. ESAIM: M2AN 48 (2014) 1557–1581. | Zbl | DOI

[2] J. Alberty and S. A. Funken, Remarks around 50 lines of MATLAB: short finite element implementation. Numer. Algorithms 20 (1999) 117–137. | Zbl | DOI

[3] T. Apel, A.-M. Sändig and J. R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19 (1996) 63–85. | Zbl | DOI

[4] T. Apel, O. Benedix, D. Sirch and B. Vexler, A priori mesh grading for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 49 (2011) 992–1005. | Zbl | DOI

[5] R. Araya, E. Behrens and R. Rodriguez, A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math. 196 (2007) 2800–2812.

[6] I. Babuska, Error-bounds for finite element method. Numer. Math. 16 (1971) 322–333. | Zbl | DOI

[7] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, 3rd edition. In: Vol. 15 of Texts in Applied Mathematics. Springer, New York (2008). | Zbl

[8] E. Casas, L 2 Estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47 (1985) 627–632. | Zbl | DOI

[9] E. Cejas and R. G. Durán, Weighted a priori estimates for elliptic equations. Studia Math. 243 (2018) 13–24. | Zbl | DOI

[10] C. D’Angelo, Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: applications to one- and three-dimensional coupled problems. SIAM J. Numer. Anal. 50 (2012) 194–215. | Zbl | DOI

[11] I. Drelichman and R. Durán, Improved Poincaré inequalities with weights. J. Math. Anal. App. 347 (2008) 286–293. | Zbl | DOI

[12] I. Drelichman, R. Durán and I. Ojea, A weighted setting for the Poisson problem with singular sources. SIAM J. Numer. Anal. 58 (2019) 590–60. | Zbl | DOI

[13] J. Duoandikoetxea, Forty Years of Muckenhoupt Weights, Function Spaces and Inequalities. Charles University and Academy of Sciences, Prague (2013).

[14] R. Durán and F. López Garca, Solutions of the divergence and analysis of the Stokes equation in planar Hölder- α domains. Math. Models Methods. Appl. Sci. 20 (2010) 95–120. | Zbl | DOI

[15] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd edition. In: Vol. 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin-Heidelberg (1983). | Zbl

[16] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman Publishing Inc., Marshfield, MA (1985). | Zbl

[17] J. Guzmán, D. Leykekhman, J. Rossmann and A. H. Schatz, Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods. Numer. Math. 112 (2009) 221–243. | Zbl | DOI

[18] L. I. Hedberg, On certain convolution inequalities. Proc. Amer. Math. Soc. 36 (1972) 505–510. | Zbl | DOI

[19] D. Jerison and C. E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995) 161–219. | Zbl | DOI

[20] T. Köppl and B. Wohlmuth, Optimal a priori error estimates for an eliptic problem with Dirac right-hand side. SIAM J. Num. An. 52 (2014) 1753–1769. | Zbl | DOI

[21] H. Li, The W p 1 stability of the Ritz projection on graded meshes. Math. Comp. 86 (2017) 49–74. | Zbl | DOI

[22] V. G. Maz’Ya and J. Rossmann, Weighted L p estimates of solutions to boundary value problems for second order elliptic systems in polyhedral domains. Z. Angew. Math. Mech. 83 (2003) 435–467. | Zbl | DOI

[23] V. G. Maz’Ya and J. Rossmann, Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2010). | Zbl | DOI

[24] R. Nochetto, E. Otárola and A. Salgado, Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications. Numer. Math. 132 (2016) 85–130. | Zbl | DOI

[25] E. Otárola and A. Salgado, The Poisson and Stokes problems on weighted spaces in Lipschitz domains and under singular forcing. J. Math. Anal. App. 471 (2018) 599. | Zbl | DOI

[26] J. V. Pellegrotti, E. Cortés, M. D. Bordenave, M. Caldarola, M. P. Kreuzer, A. D. Sánchez, et al., Plasmonic photothermal fluorescence modulation for homogeneous biosensing. ACSSensors 1 (2016) 1351–1357.

[27] E. Sawyer and R. L. Wheeden, Weighted inequalities or fractional integrals on euclidean and homogeneous spaces. Am. J. Math. 114 (1992) 813–874. | Zbl | DOI

[28] L. R. Scott, Finite element convergence for singular data. Numer. Math. 21 (1973) 317–327. | Zbl | DOI

[29] H. Si, TetGen, a Delaunay-based quatily tetrahedral mesh generator. ACM Trans. Math. Softw. 41 (2015) 1–11. | Zbl | DOI

Cité par Sources :