Nitsche-based models for the unilateral contact of plates
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S941-S967

This paper aims to present different Nitsche-based models for the unilateral contact of plate structures. Our analysis is based on the consideration of Nitsche’s method on a 3D structure with kinematic assumptions of thin or thick plate theories. This approach is compared to that of Gustafsson, Stenberg and Videman which consists of Nitsche’s method applied directly on a 2D plate model. To simplify the presentation, we focus on the contact of an elastic plate with a rigid obstacle. The different approaches are compared numerically in terms of reliability compared to the 3D elastic model.

DOI : 10.1051/m2an/2020063
Classification : 65N22
Keywords: Contact problem, variational formulation, numerical scheme, Nitsche method
@article{M2AN_2021__55_S1_S941_0,
     author = {Fabre, Mathieu and Pozzolini, C\'edric and Renard, Yves},
     title = {Nitsche-based models for the unilateral contact of plates},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S941--S967},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020063},
     mrnumber = {4221329},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020063/}
}
TY  - JOUR
AU  - Fabre, Mathieu
AU  - Pozzolini, Cédric
AU  - Renard, Yves
TI  - Nitsche-based models for the unilateral contact of plates
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S941
EP  - S967
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020063/
DO  - 10.1051/m2an/2020063
LA  - en
ID  - M2AN_2021__55_S1_S941_0
ER  - 
%0 Journal Article
%A Fabre, Mathieu
%A Pozzolini, Cédric
%A Renard, Yves
%T Nitsche-based models for the unilateral contact of plates
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S941-S967
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020063/
%R 10.1051/m2an/2020063
%G en
%F M2AN_2021__55_S1_S941_0
Fabre, Mathieu; Pozzolini, Cédric; Renard, Yves. Nitsche-based models for the unilateral contact of plates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S941-S967. doi: 10.1051/m2an/2020063

[1] P. Alart and A. Curnier, A generalized Newton method for contact problems with friction. J. Méc. Théor. Appl. 7 (1988) 67–82. | MR | Zbl

[2] C. Annavarapu, M. Hautefeuille and J. E. Dolbow, A robust Nitsche’s formulation for interface problems. Comput. Methods Appl. Mech. Eng. 225–228 (2012) 44–54. | MR | Zbl

[3] K. J. Bathe and F. Brezzi, On the convergence of a four-node plate bending element based on Mindlin–Reissner plate theory and mixed interpolation. In: Vol. 21 of Proc. Conference on Mathematics of Finite Elements and Applications–V. Academic Press, New York (1985) pp. 491–503. | MR | Zbl

[4] K. J. Bathe and E. Dvorkin, A four node plate bending element based on Mindlin-Reissner plate theory and mixed interpolation. Int. J. Numer. Methods Eng. 21 (1985) 367–383. | Zbl

[5] J. L. Batoz and G. Dhatt, Modélisation des Structures par Éléments Finis, Poutres et plaques. Hermès Science Publications, Paris 2 (1990). | Zbl

[6] S. C. Brenner, L. Y. Sung, H. Zhang and Y. Zhang, A quadratic C 0 interior penalty method for the displacement obstacle problem of clamped Kirchhoff plates. SIAM J. Numer. Anal. 50 (2012) 3329–3350. | MR | Zbl

[7] N. Büchter, E. Ramm and D. Roehl, Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int. J. Numer. Methods Eng. 37 (1994) 2551–2568. | Zbl

[8] F. Chouly, An adaptation of Nitsche’s method to the Tresca friction problem. J. Math. Anal. Appl. 411 (2014) 329–339. | MR

[9] F. Chouly and P. Hild, A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J. Numer. Anal. 51 (2013) 1295–1307. | MR | Zbl

[10] F. Chouly, P. Hild and Y. Renard, Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments. Math. Comput. 84 (2015) 1089–1112. | MR

[11] F. Chouly, R. Mlika and Y. Renard, An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact. Comput. Methods Appl. Mech. Eng. 325 (2017) 265–288. | MR

[12] F. Chouly, M. Fabre, P. Hild, J. Pousin and Y. Renard, An overview of recent results on Nitsche’s method for contact problems. In: Vol. 121 of Lecture Notes in Computational Science and Engineering. Geometrically Unfitted Finite Element Methods and Applications. Springer (2018) pp. 93–141. | MR

[13] F. Chouly, R. Mlika, Y. Renard, An unbiased Nitsche’s approximation of the frictional contact between two elastic structures, Numer. Math. 139 (2018) 593–631. | MR

[14] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland (1978). | MR | Zbl

[15] P. G. Ciarlet and P. Destuynder, A justification of two-dimensional linear plate model. J. Méc. 18 (1979) 315–343. | MR | Zbl

[16] A. Curnier, Q. C. He and A. Klarbring, Continuum mechanics modelling of large deformation contact with friction. In: Contact Mechanics. Springer (1995) pp. 145–158.

[17] P. Destuynder, Mathematical Analysis of Thin Plate Models. Springer (1996). | Zbl

[18] G. Drouet and P. Hild, Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set. SIAM J. Numer. Anal. 53 (2015) 1488–1507. | MR

[19] C. Eck and J. Jarušek, Existence results for the static contact problem with Coulomb friction. Math. Models Methods Appl. Sci. 8 (1998) 445–468. | MR | Zbl

[20] M. Fabre, J. Pousin and Y. Renard, A fictitious domain method for frictionless contact problems in elasticity using Nitsche’s method. SMAI J. Comput. Math. 2 (2016) 19–50. | MR

[21] G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I 8 (1963) 91–140. | MR | Zbl

[22] A. Fritz, S. Hüeber and B. I. Wohlmuth, A comparison of mortar and Nitsche techniques for linear elasticity. Calcolo 41 (2004) 115–137. | MR | Zbl

[23] T. Gustafsson, Finite element methods for contact problems. Ph.D. thesis. Aalto University publication series doctoral dissertations (2018).

[24] T. Gustafsson, R. Stenberg and J. Videman, A stabilised finite element method for the plate obstacle problem. BIT Numer. Math. 59 (2018) 97–124. | MR

[25] R. Hauptmann and K. Schweizerhof, A systematic development of “solid-shell” element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int. J. Numer. Methods Eng. 42 (1998) 49–69. | Zbl

[26] J. Jarušek, Contact problems with bounded friction, Coercive case. Czech. Math. J. 33 (1983) 237–261. | MR | Zbl

[27] M. Juntunen and R. Stenberg, Nitsche’s method for general boundary conditions. Math. Comput. 78 (2009) 1353–1374. | MR | Zbl

[28] J. Nečas, J. Jarušek and J. Haslinger, On the solution of the variational inequality to the Signorini problem with small friction. Boll. Unione Mat. Ital. 17-B (1980) 796–811. | MR | Zbl

[29] J. Nitsche, Über ein variationsprinzip zur lösung von Dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hamburg 36 (1971) 9–15. | MR | Zbl

[30] K. Poulios and Y. Renard, An unconstrained integral approximation of large sliding frictional contact between deformable solids. Comput. Struct. 153 (2015) 75–90.

[31] C. Pozzolini and A. Léger, A stability result concerning the obstacle problem for a plate. J. Math. Pures Appl. 90 (2008) 505–519. | MR | Zbl

[32] C. Pozzolini, Y. Renard and M. Salaun, Vibro-impact of a plate on rigid obstacles: existence theorem, convergence of a scheme and numerical simulations. IMA. J. Numer. Anal. 33 (2013) 261–294. | MR | Zbl

[33] Y. Renard, Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput. Methods Appl. Mech. Eng. 256 (2013) 38–55. | MR

[34] Y. Renard and K. Poulios, Automated FE modeling of multiphysics problems based on a generic weak form language. Submitted (2020). | MR

[35] B. I. Wohlmuth, A mortar finite element method using dual spaces for the lagrange multiplier. SIAM J. Numer. Anal. 38 (2000) 989–1012. | MR | Zbl

[36] P. Wriggers and G. Zavarise, A formulation for frictionless contact problems using a weak form introduced by Nitsche. Comput. Mech. 41 (2008) 407–420. | Zbl

Cité par Sources :