Analytical and numerical bifurcation analysis of a forest ecosystem model with human interaction
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S653-S675

We perform both analytical and numerical bifurcation analysis of an alternating forest and grassland ecosystem model coupled with human interaction. The model consists of two nonlinear ordinary differential equations incorporating the human perception of the value of the forest. The system displays multiple steady states corresponding to different forest densities as well as regimes characterized by both stable and unstable limit cycles. We derive analytically the conditions with respect to the model parameters that give rise to various types of codimension-one criticalities such as transcritical, saddle-node, and Andronov–Hopf bifurcations and codimension-two criticalities such as cusp and Bogdanov–Takens bifurcations at which homoclinic orbits occur. We also perform a numerical continuation of the branches of limit cycles. By doing so, we reveal turning points of limit cycles marking the appearance/disappearance of sustained oscillations. Such critical points that cannot be detected analytically give rise to the abrupt loss of the sustained oscillations, thus leading to another mechanism of catastrophic shifts.

DOI : 10.1051/m2an/2020054
Classification : 65Pxx, 37M20, 65Lxx, 37G15, 92-XX
Keywords: Analytical and numerical bifurcation analysis, ecosystem model, catastrophic shifts, cusp bifurcations, Bogdanov–Takens bifurcations
@article{M2AN_2021__55_S1_S653_0,
     author = {Spiliotis, Konstantinos and Russo, Lucia and Giannino, Francesco and Siettos, Constantinos},
     title = {Analytical and numerical bifurcation analysis of a forest ecosystem model with human interaction},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S653--S675},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020054},
     mrnumber = {4221317},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020054/}
}
TY  - JOUR
AU  - Spiliotis, Konstantinos
AU  - Russo, Lucia
AU  - Giannino, Francesco
AU  - Siettos, Constantinos
TI  - Analytical and numerical bifurcation analysis of a forest ecosystem model with human interaction
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S653
EP  - S675
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020054/
DO  - 10.1051/m2an/2020054
LA  - en
ID  - M2AN_2021__55_S1_S653_0
ER  - 
%0 Journal Article
%A Spiliotis, Konstantinos
%A Russo, Lucia
%A Giannino, Francesco
%A Siettos, Constantinos
%T Analytical and numerical bifurcation analysis of a forest ecosystem model with human interaction
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S653-S675
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020054/
%R 10.1051/m2an/2020054
%G en
%F M2AN_2021__55_S1_S653_0
Spiliotis, Konstantinos; Russo, Lucia; Giannino, Francesco; Siettos, Constantinos. Analytical and numerical bifurcation analysis of a forest ecosystem model with human interaction. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S653-S675. doi: 10.1051/m2an/2020054

[1] C. T. Bauch, R. Sigdel, J. Pharaon and M. Anand, Early warning signals of regime shifts in coupled human–environment systems. Proc. Nat. Acad. Sci. 113 (2016) 14560–14567. | DOI

[2] D. Burney and T. Flannery, Fifty millennia of catastrophic extinctions after human contact. Trends Ecol. Evol. 20 (2005) 395–401. | DOI

[3] J. A. Capitán and J. A. Cuesta, Catastrophic regime shifts in model ecological communities are true phase transitions. J. Stat. Mech.: Theory Exp. 2010 (2010, 2010,) P10003. | DOI

[4] A. A. Cimatoribus, S. S. Drijfhout, V. Livina and G. Van Der Schrier, Dansgaard-Oeschger events: bifurcation points in the climate system. Clim. Past 9 (2013) 323–333. | DOI

[5] S. Dai and D. G. Schaeffer, Bifurcations in a modulation equation for alternans in a cardiac fiber. ESAIM: M2AN 44 (2010) 1225–1238. | MR | Zbl | Numdam | DOI

[6] B. Deyoung, M. Barange, G. Beaugrand, R. Harris, R. I. Perry, M. Scheffer and F. Werner, Regime shifts in marine ecosystems: detection, prediction and management. Trends Ecol. Evol. 23 (2008) 402–409. | DOI

[7] A. Dhooge, W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer and B. Sautois, New features of the software matcont for bifurcation analysis of dynamical systems. Math. Comput. Model. Dyn. Syst. 14 (2008) 147–175. | MR | Zbl | DOI

[8] H. A. Dijkstra, Nonlinear Climate Dynamics. Cambridge University Press (2009). | MR | Zbl

[9] H. Engler, H. G. Kaper, T. J. Kaper and T. Vo, Dynamical systems analysis of the Maasch-Saltzman model for glacial cycles. Phys. D: Nonlinear Phenom. 359 (2017) 1–20. | MR | DOI

[10] H. Fujii, M. Mimura and Y. Nishiura, A picture of the global bifurcation diagram in ecological interacting and diffusing systems. Phys. D: Nonlinear Phenom. 5 (1982) 1–42. | MR | DOI

[11] P. Gandhi, L. Werner, S. Iams, K. Gowda and M. Silber, A topographic mechanism for arcing of dryland vegetation bands. J. R. Soc. Interface 15 (2018) 20180508. | DOI

[12] M. Genkai-Kato, Regime shifts: catastrophic responses of ecosystems to human impacts. Ecol. Res. 22 (2006) 214–219. | DOI

[13] L. J. Gordon, G. D. Peterson and E. M. Bennett, Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol. Evol. 23 (2008) 211–219. | DOI

[14] N. Hamzah, A. Ross and G. Wake, A bifurcation analysis of a simple phytoplankton and zooplankton model. Math. Comput. Model. 45 (2007) 449–458. | MR | Zbl | DOI

[15] K. A. Henderson, C. T. Bauch and M. Anand, Alternative stable states and the sustainability of forests, grasslands, and agriculture. Proc. Nat. Acad. Sci. 113 (2016) 14552–14559. | DOI

[16] M. Hirota, M. Holmgren, E. H. Van Nes and M. Scheffer, Global resilience of tropical forest and savanna to critical transitions. Science 334 (2011) 232–235. | DOI

[17] C. Innes, M. Anand and C. T. Bauch, The impact of human–environment interactions on the stability of forest-grassland mosaic ecosystems. Sci. Rep. 3 (2013) 1–10. | DOI

[18] S. E. Jørgensen, S. Bastianoni, F. Müller, B. C. Patten, B. D. Fath, J. C. Marques, S. N. Nielsen, E. Tiezzi and R. E. Ulanowicz, Ecosystems have complex dynamics – disturbance and decay. In: A New Ecology. Elsevier (2007) 143–166. | DOI

[19] S. Kéfi, V. Dakos, M. Scheffer, E. H. Van Nes and M. Rietkerk, Early warning signals also precede non-catastrophic transitions. Oikos 122 (2012) 641–648. | DOI

[20] B. Kooi, Numerical bifurcation analysis of ecosystems in a spatially homogeneous environment. Acta Biotheor. 51 (2003) 189–222. | DOI

[21] S. A. Levin, Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1 (1998) 431–436. | DOI

[22] S. D. Ling, C. R. Johnson, S. D. Frusher and K. R. Ridgway, Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Nat. Acad. Sci. 106 (2009) 22341–22345. | DOI

[23] P. V. Martín, J. A. Bonachela, S. A. Levin and M. A. Muñoz, Eluding catastrophic shifts. Proc. Nat. Acad. Sci. 112 (2015) E1828–E1836.

[24] M. Meyries, J. D. M. Rademacher and E. Siero, Quasi-linear parabolic reaction-diffusion systems: a user’s guide to well-posedness, spectra, and stability of travelling waves. SIAM J. Appl. Dyn. Syst. 13 (2014) 249–275. | MR | Zbl | DOI

[25] A. Neishtadt, On stability loss delay for dynamical bifurcations. Disc. Contin. Dyn. Syst. - S 2 (2009) 897–909. | MR | Zbl

[26] M. Rietkerk, Self-organized patchiness and catastrophic shifts in ecosystems. Science 305 (2004) 1926–1929. | DOI

[27] L. Russo, K. Spiliotis, F. Giannino, S. Mazzoleni and C. Siettos, Bautin bifurcations in a forest-grassland ecosystem with human–environment interactions. Sci. Rep. 9 (2019) 1–8. | DOI

[28] M. Scheffer, Foreseeing tipping points. Nature 467 (2010) 411–412. | DOI

[29] M. Scheffer and E. Jeppesen, Regime shifts in shallow lakes. Ecosystems 10 (2007) 1–3. | DOI

[30] M. Scheffer, S. Carpenter, J. A. Foley, C. Folke and B. Walker, Catastrophic shifts in ecosystems. Nature 413 (2001) 591–596. | DOI

[31] R. Seydel, Practical Bifurcation and Stability Analysis. Springer, New York (2010). | MR | Zbl | DOI

[32] E. Siero, A. Doelman, M. B. Eppinga, J. D. M. Rademacher, M. Rietkerk and K. Siteur, Striped pattern selection by advective reaction-diffusion systems: resilience of banded vegetation on slopes. Chaos: Interdiscip. J. Nonlinear Sci. 25 (2015) 036411. | MR | DOI

[33] K. Siteur, M. B. Eppinga, A. Doelman, E. Siero and M. Rietkerk, Ecosystems off track: rate-induced critical transitions in ecological models. Oikos 125 (2016) 1689–1699. | DOI

[34] K. Spiliotis, L. Russo, F. Giannino, S. Cuomo, C. Siettos and G. Toraldo, Nonlinear Galerkin methods for a system of PDEs with Turing instabilities. Calcolo 55 (2018) 9. | MR | DOI

[35] A. C. Staver, S. Archibald and S. A. Levin, The global extent and determinants of savanna and forest as alternative biome states. Science 334 (2011) 230–232. | DOI

[36] T. Troost, B. Kooi and S. Kooijman, Bifurcation analysis of ecological and evolutionary processes in ecosystems. Ecol. Model. 204 (2007) 253–268. | DOI

[37] H. Yu, M. Zhao and R. P. Agarwal, Stability and dynamics analysis of time delayed eutrophication ecological model based upon the Zeya reservoir. Math. Comput. Simul. 97 (2014) 53–67. | MR | DOI

Cité par Sources :