Error analysis of a fully discrete finite element method for variable density incompressible flows in two dimensions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S103-S147

An error estimate is presented for a fully discrete, linearized and stabilized finite element method for solving the coupled system of nonlinear hyperbolic and parabolic equations describing incompressible flow with variable density in a two-dimensional convex polygon. In particular, the error of the numerical solution is split into the temporal and spatial components, separately. The temporal error is estimated by applying discrete maximal L p -regularity of time-dependent Stokes equations, and the spatial error is estimated by using energy techniques based on the uniform regularity of the solutions given by semi-discretization in time.

DOI : 10.1051/m2an/2020029
Classification : 65N30, 76M05
Keywords: Navier–Stokes, variable density, finite element, convergence, maximal $L^p$-regularity
@article{M2AN_2021__55_S1_S103_0,
     author = {Cai, Wentao and Li, Buyang and Li, Ying},
     title = {Error analysis of a fully discrete finite element method for variable density incompressible flows in two dimensions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S103--S147},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020029},
     mrnumber = {4221298},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020029/}
}
TY  - JOUR
AU  - Cai, Wentao
AU  - Li, Buyang
AU  - Li, Ying
TI  - Error analysis of a fully discrete finite element method for variable density incompressible flows in two dimensions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S103
EP  - S147
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020029/
DO  - 10.1051/m2an/2020029
LA  - en
ID  - M2AN_2021__55_S1_S103_0
ER  - 
%0 Journal Article
%A Cai, Wentao
%A Li, Buyang
%A Li, Ying
%T Error analysis of a fully discrete finite element method for variable density incompressible flows in two dimensions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S103-S147
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020029/
%R 10.1051/m2an/2020029
%G en
%F M2AN_2021__55_S1_S103_0
Cai, Wentao; Li, Buyang; Li, Ying. Error analysis of a fully discrete finite element method for variable density incompressible flows in two dimensions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S103-S147. doi: 10.1051/m2an/2020029

Y. Achdou and J.-L. Guermond, Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 37 (2000) 799–826. | MR | Zbl | DOI

R. Adams and J. Fournier, Sobolev Spaces, Pure and Applied Mathematics. Elsevier Science (2003). | MR | Zbl

G. Akrivis and B. Li, Maximum norm analysis of implicit–explicit backward difference formulas for nonlinear parabolic equations. IMA J. Numer. Anal. 38 (2018) 75–101. | MR | DOI

G. Akrivis, B. Li and C. Lubich, Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations. Math. Comput. 86 (2017) 1527–1552. | MR | DOI

A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell and M. L. Welcome, A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. J. Comput. Phys. 142 (1998) 1–46. | MR | Zbl | DOI

A. Ashyralyev, S. Piskarev and L. Weis, On well-posedness of difference schemes for abstract parabolic equations in L p ( [ 0 , T ] ; E ) spaces. Numer. Funct. Anal. Optim. 23 (2002) 669–693. | MR | Zbl | DOI

J. B. Bell and D. L. Marcus, A second-order projection method for variable-density flows. J. Comput. Phys. 101 (1992) 334–348. | Zbl | DOI

D. Boffi and Stability of higher order triangular Hood-Taylor methods for the stationary stokes equations. Math. Models Methods Appl. Sci. 04 (1994) 223–235. | MR | Zbl | DOI

S. C. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed. In: Texts in Applied Mathematics. Springer-Verlag, New York (2008). | MR | Zbl

S. Brenner, J. Cui, Z. Nan and L. Sung, Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell’s equations. Math. Comput. 81 (2012) 643–659. | MR | Zbl | DOI

C. Calgaro, E. Creusé and T. Goudon, An hybrid finite volume-finite element method for variable density incompressible flows. J. Comput. Phys. 227 (2008) 4671–4696. | MR | Zbl | DOI

A. J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968) 745–762. | MR | Zbl | DOI

M. Crouzeix and V. Thomée, The stability in L 2 and W p 1 of the L 2 -projection onto finite element function spaces. Math. Comput. 48 (1987) 521–532. | MR | Zbl

R. Danchin, Density-dependent incompressible fluids in bounded domains. J. Math. Fluid Mech. 8 (2006) 333–381. | MR | Zbl | DOI

D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. In: Vol. 69 of Mathématiques et Applications. Springer, Berlin Heidelberg (2012). | MR | Zbl | DOI

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. In: Springer Monographs in Mathematics. Springer-Verlag, New York, (2011). | MR | DOI

H. Gao, B. Li and W. Sun, Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon. Numer. Math. 136 (2017) 383–409. | MR | DOI

M. Geissert, Discrete maximal L p regularity for finite element operators. SIAM J. Numer. Anal. 44 (2006) 677–698. | MR | Zbl | DOI

J. Geng and Z. Shen, The Neumann problem and Helmholtz decomposition in convex domains. J. Funct. Anal. 259 (2010) 2147–2164. | MR | Zbl | DOI

V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. In: Springer Series in Computational Mathematics, Springer, Berlin Heidelberg (1986). | MR | Zbl | DOI

V. Girault, R. Nochetto and R. Scott, Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl. 84 (2005) 279–330. | MR | Zbl | DOI

P. Grisvard, Elliptic Problems in Nonsmooth Domains. Society for Industrial and Applied Mathematics (2011). | MR | Zbl

J. L. Guermond and L. Quartapelle, A projection FEM for variable density incompressible flows. J. Comput. Phys. 165 (2000) 167–188. | MR | Zbl | DOI

J. L. Guermond and A. Salgado, A fractional step method based on a pressure Poisson equation for incompressible flows with variable density. C. R. Math. 346 (2008) 913–918. | MR | Zbl | DOI

J. L. Guermond and A. Salgado, A splitting method for incompressible flows with variable density based on a pressure Poisson equation. J. Comput. Phys. 228 (2009) 2834–2846. | MR | Zbl | DOI

J. L. Guermond and A. Salgado, Error analysis of a fractional time-stepping technique for incompressible flows with variable density. SIAM J. Numer. Anal. 49 (2011) 917–940. | MR | Zbl | DOI

J. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195 (2006) 6011–6045. | MR | Zbl | DOI

J. G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. | MR | Zbl | DOI

R. B. Kellogg and J. E. Osborn, A regularity for the Stokes problem in a convex polygon. J. Funct. Anal. 21 (1976) 397–431. | MR | Zbl | DOI

B. Kovács, B. Li and C. Lubich, A-stable time discretizations preserve maximal parabolic regularity. SIAM J. Numer. Anal. 54 (2016) 3600–3624. | MR

P. C. Kunstmann, B. Li and C. Lubich, Runge-Kutta time discretization of nonlinear parabolic equations studied via discrete maximal parabolic regularity. Found. Comput. Math. 18 (2018) 1109–1130. | MR

O. Ladyzhenskaya and V. Solonnikov, Unique solvability of an initial- and boundary-value problem for viscous incompressible inhomogeneous fluids. J. Sov. Math. 9 (1978) 697–749. | Zbl

B. Li, Maximum-norm stability and maximal L p regularity of FEMs for parabolic equations with Lipschitz continuous coefficients. Numer. Math. 131 (2015) 489–516. | MR

B. Li, Analyticity, maximal regularity and maximum-norm stability of semi-discrete finite element solutions of parabolic equations in nonconvex polyhedra. Math. Comput. 88 (2019) 1–44. | MR

B. Li and W. Sun, Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51 (2013) 1959–1977. | MR | Zbl

B. Li and W. Sun, Linearized FE approximations to a nonlinear gradient flow. SIAM J. Numer. Anal. 52 (2014) 2623–2646. | MR

B. Li and W. Sun, Regularity of the diffusion-dispersion tensor and error analysis of FEMs for a porous media flow. SIAM J. Numer. Anal. 53 (2015) 1418–1437. | MR

B. Li and W. Sun, Maximal L p analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra. Math. Comput. 86 (2017) 1071–1102. | MR

B. Li and Z. Zhang, Mathematical and numerical analysis of time-dependent Ginzburg-Landau equations in nonconvex polygons based on Hodge decomposition. Math. Comput. 86 (2017) 1579–1608. | MR

Y. Li, L. Mei, J. Ge and F. Shi, A new fractional time-stepping method for variable density incompressible flows. J. Comput. Phys. 242 (2013) 124–137. | MR | Zbl

Y. Li, J. Li, L. Mei and Y. Li, Mixed stabilized finite element methods based on backward difference/Adams–Bashforth scheme for the time-dependent variable density incompressible flows. Comput. Math. App. 70 (2015) 2575–2588. | MR

C. Liu and N. J. Walkington, Convergence of numerical approximations of the incompressible Navier-Stokes equations with variable density and viscosity. SIAM J. Numer. Anal. 45 (2007) 1287–1304. | MR | Zbl

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems. In: Vol. 16 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Verlag (1995). | MR | Zbl

E. Ortega-Torres, P. Braz E Silva and M. Rojas-Medar, Analysis of an iterative method for variable density incompressible fluids. Ann. Univ. Ferrara 55 (2009) 129. | MR | Zbl

A. Prohl, Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations. In: Advances in Numerical Mathematics. Vieweg+Teubner Verlag (1997). | MR | Zbl

J.-H. Pyo and J. Shen, Gauge-Uzawa methods for incompressible flows with variable density. J. Comput. Phys. 221 (2007) 181–197. | MR | Zbl

R. Rannacher, On Chorin’s Projection Method for the Incompressible Navier-Stokes Equations. Springer Berlin Heidelberg, Berlin, Heidelberg (1992) 167–183. | MR | Zbl

J. Shen, On error estimates of projection methods for Navier-Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29 (1992) 57–77. | MR | Zbl

J. Shen, On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes. Math. Comput. 65 (1996) 1039–1065. | MR | Zbl

E. M. Stein, Singular Integrals and Differentiability Properties of Functions. In: Monographs in Harmonic Analysis. Princeton University Press (1970). | MR | Zbl

L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. In: Vol. 3 of Lecture Notes of the Unione Matematica Italiana. Springer-Verlag, Berlin Heidelberg (2007). | MR | Zbl

Cité par Sources :