Computing homogenized coefficients via multiscale representation and hierarchical hybrid grids
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S149-S185

We present an efficient method for the computation of homogenized coefficients of divergence-form operators with random coefficients. The approach is based on a multiscale representation of the homogenized coefficients. We then implement the method numerically using a finite-element method with hierarchical hybrid grids, which is a semi-implicit method allowing for significant gains in memory usage and execution time. Finally, we demonstrate the efficiency of our approach on two- and three-dimensional examples, for piecewise-constant coefficients with corner discontinuities. For moderate ellipticity contrast and for a precision of a few percentage points, our method allows to compute the homogenized coefficients on a laptop computer in a few seconds, in two dimensions, or in a few minutes, in three dimensions.

DOI : 10.1051/m2an/2020024
Classification : 65N55, 35B27
Keywords: Homogenization, multiscale method, hierarchical hybrid grids
@article{M2AN_2021__55_S1_S149_0,
     author = {Hannukainen, Antti and Mourrat, Jean-Christophe and Stoppels, Harmen T.},
     title = {Computing homogenized coefficients \protect\emph{via} multiscale representation and hierarchical hybrid grids},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S149--S185},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020024},
     mrnumber = {4221305},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020024/}
}
TY  - JOUR
AU  - Hannukainen, Antti
AU  - Mourrat, Jean-Christophe
AU  - Stoppels, Harmen T.
TI  - Computing homogenized coefficients via multiscale representation and hierarchical hybrid grids
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S149
EP  - S185
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020024/
DO  - 10.1051/m2an/2020024
LA  - en
ID  - M2AN_2021__55_S1_S149_0
ER  - 
%0 Journal Article
%A Hannukainen, Antti
%A Mourrat, Jean-Christophe
%A Stoppels, Harmen T.
%T Computing homogenized coefficients via multiscale representation and hierarchical hybrid grids
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S149-S185
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020024/
%R 10.1051/m2an/2020024
%G en
%F M2AN_2021__55_S1_S149_0
Hannukainen, Antti; Mourrat, Jean-Christophe; Stoppels, Harmen T. Computing homogenized coefficients via multiscale representation and hierarchical hybrid grids. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S149-S185. doi: 10.1051/m2an/2020024

A. Abdulle, D. Arjmand and E. Paganoni, Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems. C. R. Math. Acad. Sci. Paris 357 (2019) 545–551. | MR

M. A. Akcoglu and U. Krengel, Ergodic theorems for superadditive processes. J. Reine Angew. Math. 323 (1981) 53–67. | MR | Zbl

Y. Almog, Averaging of dilute random media: a rigorous proof of the Clausius-Mossotti formula. Arch. Ration. Mech. Anal. 207 (2013) 785–812. | MR | Zbl

Y. Almog, The Clausius-Mossotti formula in a dilute random medium with fixed volume fraction. Multiscale Model. Simul. 12 (2014) 1777–1799. | MR

Y. Almog, The Clausius-Mossotti formula for dilute random media of perfectly conducting inclusions. SIAM J. Math. Anal. 49 (2017) 2885–2919. | MR

A. Anantharaman and C. Le Bris, A numerical approach related to defect-type theories for some weakly random problems in homogenization. Multiscale Model. Simul. 9 (2011) 513–544. | MR | Zbl

A. Anantharaman and C. Le Bris, Elements of mathematical foundations for numerical approaches for weakly random homogenization problems. Commun. Comput. Phys. 11 (2012) 1103–1143. | MR

S. Armstrong and P. Dario, Elliptic regularity and quantitative homogenization on percolation clusters. Commun. Pure Appl. Math. 71 (2018) 1717–1849. | MR

S. N. Armstrong and J.-C. Mourrat, Lipschitz regularity for elliptic equations with random coefficients. Arch. Ration. Mech. Anal. 219 (2016) 255–348. | MR

S. N. Armstrong and C. K. Smart, Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. (4) 49 (2016) 423–481. | MR | Zbl | Numdam

S. Armstrong, T. Kuusi and J.-C. Mourrat, Mesoscopic higher regularity and subadditivity in elliptic homogenization. Commun. Math. Phys. 347 (2016) 315–361. | MR | DOI

S. Armstrong, T. Kuusi and J.-C. Mourrat, The additive structure of elliptic homogenization. Invent. Math. 208 (2017) 999–1154. | MR | DOI

S. Armstrong, T. Kuusi and J.-C. Mourrat, Quantitative Stochastic Homogenization and Large-Scale Regularity. In: Vol. 352 of Grundlehren der mathematischen Wissenschaften, Springer Nature (2019). | MR

B. K. Bergen and F. Hülsemann, Hierarchical hybrid grids: data structures and core algorithms for multigrid. Numer. Linear Algebra App. 11 (2004) 279–291. | MR | Zbl | DOI

B. Bergen, F. Hülsemann and U. Rüde, Is 1.7 × 1010 unknowns the largest finite element system that can be solved today? In: SC’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing. IEEE (2005). | DOI

L. Berlyand and V. Mityushev, Generalized Clausius-Mossotti formula for random composite with circular fibers. J. Stat. Phys. 102 (2001) 115–145. | MR | Zbl | DOI

J. Bey, Tetrahedral grid refinement. Computing 55 (1995) 355–378. | MR | Zbl | DOI

X. Blanc and C. Le Bris, Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Netw. Heterogen. Media 5 (2010) 1–29. | MR | Zbl | DOI

X. Blanc, C. Le Bris and, F. Legoll, Some variance reduction methods for numerical stochastic homogenization. Philos. Trans. R. Soc. A 374 (2016) 15. | MR | DOI

S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, 3rd edition. In: Vol. 15 of Texts in Applied Mathematics. Springer, New York (2008). | MR | Zbl

E. Cancès, V. Ehrlacher, F. Legoll, B. Stamm and S. Xiang, An embedded corrector problem for homogenization. Part II: algorithms and discretization. J. Comput. Phys. 407 (2020) 109254,26. | MR | DOI

E. Cancès, V. Ehrlacher, F. Legoll, B. Stamm and S. Xiang, An embedded corrector problem for homogenization. Part I: theory. Preprint arXiv:1807.05131 (2018). | MR

P. Dario, Optimal corrector estimates on percolation clusters. Preprint arXiv:1805.00902 (2020). | MR

M. Duerinckx and A. Gloria, Analyticity of homogenized coefficients under Bernoulli perturbations and the Clausius-Mossotti formulas. Arch. Ration. Mech. Anal. 220 (2016) 297–361. | MR | DOI

Y. Efendiev and T. Y. Hou, Multiscale finite element methods. In: Vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer, New York (2009). | MR | Zbl

A.-C. Egloffe, A. Gloria, J.-C. Mourrat and T. N. Nguyen, Random walk in random environment, corrector equation and homogenized coefficients: from theory to numerics, back and forth. IMA J. Numer. Anal. 35 (2015) 499–545. | MR | DOI

J. Fischer, The choice of representative volumes in the approximation of effective properties of random materials. Arch. Ration. Mech. Anal. 234 (2019) 635–726. | MR | DOI

A. Gholami, D. Malhotra, H. Sundar and G. Biros, FFT, FMM, or multigrid? A comparative study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit cube. SIAM J. Sci. Comput. 38 (2016) C280–C306. | MR | DOI

A. Gloria, Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations. ESAIM: M2AN 46 (2012) 1–38. | MR | Zbl | Numdam | DOI

A. Gloria and Z. Habibi, Reduction in the resonance error in numerical homogenization II: correctors and extrapolation. Found. Comput. Math. 16 (2016) 217–296. | MR | DOI

A. Gloria and J.-C. Mourrat, Spectral measure and approximation of homogenized coefficients. Probab. Theory Relat. Fields 154 (2012) 287–326. | MR | Zbl | DOI

A. Gloria and F. Otto, An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab. 39 (2011) 779–856. | MR | Zbl | DOI

A. Gloria and F. Otto, An optimal error estimate in stochastic homogenization of discrete elliptic equations. Ann. Appl. Probab. 22 (2012) 1–28. | MR | Zbl | DOI

A. Gloria and F. Otto, Quantitative results on the corrector equation in stochastic homogenization. J. Eur. Math. Soc. (JEMS) 19 (2017) 3489–3548. | MR | DOI

A. Gloria and F. Otto, The corrector in stochastic homogenization: optimal rates, stochastic integrability, and fluctuations. Preprint arXiv:1510.08290 (2016).

A. Gloria, S. Neukamm and F. Otto, Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Invent. Math. 199 (2015) 455–515. | MR | Zbl | DOI

A. Gloria, S. Neukamm and F. Otto, A regularity theory for random elliptic operators. Preprint arXiv:1409.2678 (2019). | MR

T. Gradl and U. Rüde, High performance multigrid on current large scale parallel computers. In: 9th Workshop on Parallel Systems and Algorithms (2008).

A. Hannukainen, J.-C. Mourrat and H. Stoppels, Homogenization.jl tutorial. Available from: https://haampie.github.io/Homogenization.jl/dev/ (2020).

T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. | MR | Zbl | DOI

T. Y. Hou, X.-H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68 (1999) 913–943. | MR | Zbl | DOI

V. Khoromskaia, B. N. Khoromskij and F. Otto, Numerical study in stochastic homogenization for elliptic PDEs: convergence rate in the size of representative volume elements. Preprint arXiv:1903.12227 (2019). | MR

S. M. Kozlov, Geometric aspects of averaging. Uspekhi Mat. Nauk 44 (1989) 79–120. | MR | Zbl

C. Le Bris and F. Legoll, Examples of computational approaches for elliptic, possibly multiscale PDEs with random inputs. J. Comput. Phys. 328 (2017) 455–473. | MR | DOI

C. Le Bris, F. Legoll and W. Minvielle, Special quasirandom structures: a selection approach for stochastic homogenization. Monte Carlo Methods App. 22 (2016) 25–54. | MR | DOI

D. Marahrens and F. Otto, Annealed estimates on the Green function. Probab. Theory Relat. Fields 163 (2015) 527–573. | MR | DOI

J. C. Maxwell, Medium in which small spheres are uniformly disseminated, 3rd edition. In: A Treatise on Electricity and Magnetism, part II, chapter IX. Clarendon Press (1891) 314. | MR

N. G. Meyers, An L p -estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa 17 (1963) 189–206. | MR | Zbl | Numdam

J.-C. Mourrat, Variance decay for functionals of the environment viewed by the particle. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 294–327. | MR | Zbl | Numdam

J.-C. Mourrat, First-order expansion of homogenized coefficients under Bernoulli perturbations. J. Math. Pures Appl. 103 (2015) 68–101. | MR | Zbl | DOI

J.-C. Mourrat, Efficient methods for the estimation of homogenized coefficients. Found. Comput. Math. 19 (2019) 435–483. | MR | Zbl | DOI

J.-C. Mourrat, An informal introduction to quantitative stochastic homogenization. J. Math. Phys. 60 (2019) 11. | MR | Zbl

A. Naddaf and T. Spencer, On homogenization and scaling limit of some gradient perturbations of a massless free field. Commun. Math. Phys. 183 (1997) 55–84. | MR | Zbl | DOI

A. Naddaf and T. Spencer, Estimates on the variance of some homogenization problems (1998).

G. C. Papanicolaou, Diffusion in random media. In: Vol. 1 of Surveys in Applied Mathematics. Plenum, New York (1995) 205–253. | MR | Zbl | DOI

L. C. Piccinini and S. Spagnolo, On the Hölder continuity of solutions of second order elliptic equations in two variables. Ann. Scuola Norm. Sup. Pisa 26 (1972) 391–402. | MR | Zbl | Numdam

J. W. Strutt, 3d Baron Rayleigh, On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philos. Mag. 34 (1892) 481–502. | JFM | DOI

S.-H. Wei, L. Ferreira, J. E. Bernard and A. Zunger, Electronic properties of random alloys: special quasirandom structures. Phys. Rev. B 42 (1990) 9622. | DOI

X. Yue and E. Weinan, The local microscale problem in the multiscale modeling of strongly heterogeneous media: effects of boundary conditions and cell size. J. Comput. Phys. 222 (2007) 556–572. | MR | Zbl | DOI

A. Zunger, S.-H. Wei, L. Ferreira and J. E. Bernard, Special quasirandom structures. Phys. Rev. Lett. 65 (1990) 353. | DOI

Cité par Sources :