We use uniform W$$ estimates to obtain corrector results for periodic homogenization problems of the form $$ subject to a homogeneous Dirichlet boundary condition. We propose and rigorously analyze a numerical scheme based on finite element approximations for such nondivergence-form homogenization problems. The second part of the paper focuses on the approximation of the corrector and numerical homogenization for the case of nonuniformly oscillating coefficients. Numerical experiments demonstrate the performance of the scheme.
Keywords: Homogenization, nondivergence-form elliptic PDE, finite element methods
@article{M2AN_2020__54_4_1221_0,
author = {Capdeboscq, Yves and Sprekeler, Timo and S\"uli, Endre},
title = {Finite element approximation of elliptic homogenization problems in nondivergence-form},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1221--1257},
year = {2020},
publisher = {EDP Sciences},
volume = {54},
number = {4},
doi = {10.1051/m2an/2019093},
mrnumber = {4111657},
zbl = {1445.35028},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2019093/}
}
TY - JOUR AU - Capdeboscq, Yves AU - Sprekeler, Timo AU - Süli, Endre TI - Finite element approximation of elliptic homogenization problems in nondivergence-form JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 1221 EP - 1257 VL - 54 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2019093/ DO - 10.1051/m2an/2019093 LA - en ID - M2AN_2020__54_4_1221_0 ER -
%0 Journal Article %A Capdeboscq, Yves %A Sprekeler, Timo %A Süli, Endre %T Finite element approximation of elliptic homogenization problems in nondivergence-form %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 1221-1257 %V 54 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2019093/ %R 10.1051/m2an/2019093 %G en %F M2AN_2020__54_4_1221_0
Capdeboscq, Yves; Sprekeler, Timo; Süli, Endre. Finite element approximation of elliptic homogenization problems in nondivergence-form. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1221-1257. doi: 10.1051/m2an/2019093
, On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4 (2005) 447–459. | MR | Zbl | DOI
, The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs. Multiple Scales Problems in Biomathematics, Mechanics, Physics and Numerics. In: Vol. 31 of GAKUTO Internat. Biomathematics, Mechanics, Physics and Numerics. Ser. Math. Sci. Appl. Gakkotosho, Tokyo (2009) 133–181. | MR | Zbl
and , Finite element heterogeneous multiscale method for nonlinear monotone parabolic homogenization problems. ESAIM: M2AN 50 (2016) 1659–1697. | MR | Numdam | DOI | Zbl
and , A priori error analysis of the finite element heterogeneous multiscale method for the wave equation over long time. SIAM J. Numer. Anal. 54 (2016) 1507–1534. | MR | DOI | Zbl
, and , The heterogeneous multiscale method. Acta Numer. 21 (2012) 1–87. | MR | Zbl | DOI
, Shape optimization by the homogenization method. In: Vol. 146 of Applied Mathematical Sciences. Springer-Verlag, New York (2002). | MR | Zbl | DOI
and , Homogenization of periodic non self-adjoint problems with large drift and potential. ESAIM: COCV 13 (2007) 735–749. | MR | Zbl | Numdam
and , Homogenization of a convection-diffusion model with reaction in a porous medium. C. R. Math. Acad. Sci. Paris 344 (2007) 523–528. | MR | Zbl | DOI
and , An equation-free approach for second order multiscale hyperbolic problems in non-divergence form. Commun. Math. Sci. 16 (2018) 2317–2343. | MR | DOI
and , Compactness methods in the theory of homogenization. II. Equations in nondivergence form. Comm. Pure Appl. Math. 42 (1989) 139–172. | MR | Zbl | DOI
and , bounds on singular integrals in homogenization. Comm. Pure Appl. Math. 44 (1991) 897–910. | MR | Zbl | DOI
, Computation of derivatives in the finite element method. Comment. Math. Univ. Carolinae 11 (1970) 545–558. | MR | Zbl
, and , Homogenization of elliptic equations with principal part not in divergence form and Hamiltonian with quadratic growth. Comm. Pure Appl. Math. 39 (1986) 769–805. | MR | Zbl | DOI
, and , Asymptotic Analysis for Periodic Structures . Corrected reprint of the 1978 original. AMS Chelsea Publishing, Providence, RI (2011). | MR | Zbl
and , Integrability and continuity of solutions to double divergence form equations. Ann. Mat. Pura Appl. 196 (2017) 1609–1635. | MR | DOI
, and , On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Comm. Partial Differ. Equ. 26 (2001) 2037–2080. | MR | Zbl
, Homogenization of a diffusion equation with drift. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 807–812. | MR | Zbl | DOI
and , An introduction to homogenization. In: Vol. 17 Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York (1999). | MR | Zbl
and , Multiscale finite element methods. Theory and applications. In: Vol. 4 ofSurveys and Tutorials in the Applied Mathematical Sciences. Springer, New York (2009). | MR | Zbl
and , Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54 (1994) 333–408. | MR | Zbl | DOI
, and , Finite element methods for second order linear elliptic partial differential equations in non-divergence form. Math. Comput. 86 (2017) 2025–2051. | MR | DOI
and , Numerical averaging of non-divergence structure elliptic operators. Commun. Math. Sci. 7 (2009) 785–804. | MR | Zbl | DOI
, Variational formulation and numerical analysis of linear elliptic equations in nondivergence form with Cordes coefficients. SIAM J. Numer. Anal. 55 (2017) 737–757. | MR | DOI
and , Mixed finite element approximation of the Hamilton–Jacobi–Bellman equation with Cordes coefficients. SIAM J. Numer. Anal. 57 (2019) 592–614. | MR | DOI
and , Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin (2001). | MR | Zbl
, Elliptic problems in nonsmooth domains. In: Vol. 69 of Classics in Applied Mathematics. Reprint of the 1985 original. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). | MR | Zbl
, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | MR | Zbl | DOI
and , Compatibility conditions for Dirichlet and Neumann problems of Poisson’s equation on a rectangle. J. Math. Anal. Appl. 420 (2014) 1005–1023. | MR | Zbl | DOI
, and , Modification of dimension-splitting methods – overcoming the order reduction due to corner singularities. IMA J. Numer. Anal. 35 (2015) 1078–1091. | MR | DOI
and , A note on homogenization of advection-diffusion problems with large expected drift. Z. Anal. Anwend. 30 (2011) 319–339. | MR | Zbl | DOI
, , and , From homogenization to averaging in cellular flows. Ann. Inst. Henri Poincaré Anal. Non Linéaire 31 (2014) 957–983. | MR | Zbl | Numdam | DOI
, , and , Some remarks on a priori estimates of highly regular solutions for the Poisson equation in polygonal domains. Jpn. J. Ind. Appl. Math. 33 (2016) 629–636. | MR | DOI
and , A finite element method for second order nonvariational elliptic problems. SIAM J. Sci. Comput. 33 (2011) 786–801. | MR | Zbl | DOI
, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28 (1974) 959–962. | MR | Zbl | DOI
and , Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordès coefficients. SIAM J. Numer. Anal. 51 (2013) 2088–2106. | MR | Zbl | DOI
and , Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. SIAM J. Numer. Anal. 52 (2014) 993–1016. | MR | Zbl | DOI
, The general theory of homogenization. A personalized introduction. In: Vol. 7 of Lecture Notes of the Unione Matematica Italiana. Springer-Verlag, Berlin; UMI, Bologna (2009). | MR | Zbl
, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87–132. | MR | Zbl | DOI
Cité par Sources :





