Projector augmented-wave method: an analysis in a one-dimensional setting
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 25-58

In this article, a numerical analysis of the projector augmented-wave (PAW) method is presented, restricted to the case of dimension one with Dirac potentials modeling the nuclei in a periodic setting. The PAW method is widely used in electronic ab initio calculations, in conjunction with pseudopotentials. It consists in replacing the original electronic Hamiltonian H by a pseudo-Hamiltonian HPAW via the PAW transformation acting in balls around each nuclei. Formally, the new eigenvalue problem has the same eigenvalues as H and smoother eigenfunctions. In practice, the pseudo-Hamiltonian HPAW has to be truncated, introducing an error that is rarely analyzed. In this paper, error estimates on the lowest PAW eigenvalue are proved for the one-dimensional periodic Schrödinger operator with double Dirac potentials.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2019017
Classification : 65N15, 65G99, 35P15
Keywords: Eigenvalue problem, error analysis, electronic structure calculations, projector augmented-wave method
@article{M2AN_2020__54_1_25_0,
     author = {Dupuy, Mi-Song},
     title = {Projector augmented-wave method: an analysis in a one-dimensional setting},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {25--58},
     year = {2020},
     publisher = {EDP Sciences},
     volume = {54},
     number = {1},
     doi = {10.1051/m2an/2019017},
     mrnumber = {4051841},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2019017/}
}
TY  - JOUR
AU  - Dupuy, Mi-Song
TI  - Projector augmented-wave method: an analysis in a one-dimensional setting
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 25
EP  - 58
VL  - 54
IS  - 1
PB  - EDP Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2019017/
DO  - 10.1051/m2an/2019017
LA  - en
ID  - M2AN_2020__54_1_25_0
ER  - 
%0 Journal Article
%A Dupuy, Mi-Song
%T Projector augmented-wave method: an analysis in a one-dimensional setting
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 25-58
%V 54
%N 1
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2019017/
%R 10.1051/m2an/2019017
%G en
%F M2AN_2020__54_1_25_0
Dupuy, Mi-Song. Projector augmented-wave method: an analysis in a one-dimensional setting. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 25-58. doi: 10.1051/m2an/2019017

C. Audouze, L’utilisation du formalisme PAW en théorie de la fonctionnelle de la densité perturbée. Research Report CEA (2006).

C. Audouze, F. Jollet, M. Torrent and X. Gonze, Projector augmented-wave approach to density-functional perturbation theory. Phys. Rev. B 73 (2006) 235101. | DOI

X. Blanc, E. Cancès and M.-S. Dupuy, Variational projector augmented-wave method: theoretical analysis and preliminary numerical results. Preprint (2017). | arXiv | MR

X. Blanc, E. Cancès and M.-S. Dupuy, Variational projector augmented-wave method. C.R. Math. 355 (2017) 665–670. | MR | DOI

P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50 (1994) 17953–17979. | DOI

E. Cancès and G. Dusson, Discretization error cancellation in electronic structure calculation: toward a quantitative study. ESAIM: M2AN 51 (2017) 1617–1636. | MR | Numdam | DOI

N. Holzwarth, A. Tackett and G. Matthews, A Projector Augmented Wave (PAW) code for electronic structure calculations, part I: atompaw for generating atom-centered functions. Comput. Phys. Commun. 135 (2001) 329–347. | Zbl | DOI

F. Jollet, M. Torrent and N. Holzwarth, Generation of projector augmented-wave atomic data: A 71 element validated table in the XML format. Comput. Phys. Commun. 185 (2014) 1246–1254. | DOI

T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10 (1957) 151–177. | Zbl | MR | DOI

L. Kleinman and D. Bylander, Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48 (1982) 1425. | DOI

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59 (1999) 1758–1775. | DOI

C.J. Pickard and F. Mauri, All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B 63 (2001) 245101. | DOI

M. Torrent, F. Jollet, F. Bottin, G. Zérah and X. Gonze, Implementation of the projector augmented-wave method in the ABINIT code: application to the study of iron under pressure. Comput. Mater. Sci. 42 (2008) 337–351. | DOI

N. Troullier and J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43 (1991) 1993. | DOI

Cité par Sources :