We study a finite element approximation of the initial-boundary value problem of the 3D incompressible magnetohydrodynamic (MHD) system under smooth domains and data. We first establish several important regularities and a priori estimates for the velocity, pressure and magnetic field (u, p, B) of the MHD system under the assumption that ∇u ∈ L4(0,T;L2(Ω)3 × 3) and ∇ × B ∈ L4(0,T;L2(Ω)3). Then we formulate a finite element approximation of the MHD flow. Finally, we derive the optimal error estimates of the discrete velocity and magnetic field in energy-norm and the discrete pressure in L2-norm, and the optimal error estimates of the discrete velocity and magnetic field in L2-norm by means of a novel negative-norm technique, without the help of the standard duality argument for the Navier-Stokes equations.
Keywords: MHD flow, finite element approximations, a priori estimates, error estimates, negative-norm technique
He, Yinnian 1 ; Zou, Jun 1
@article{M2AN_2018__52_1_181_0,
author = {He, Yinnian and Zou, Jun},
title = {A priori estimates and optimal finite element approximation of the {MHD} flow in smooth domains},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {181--206},
year = {2018},
publisher = {EDP Sciences},
volume = {52},
number = {1},
doi = {10.1051/m2an/2018006},
zbl = {1395.65143},
mrnumber = {3808158},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2018006/}
}
TY - JOUR AU - He, Yinnian AU - Zou, Jun TI - A priori estimates and optimal finite element approximation of the MHD flow in smooth domains JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 181 EP - 206 VL - 52 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2018006/ DO - 10.1051/m2an/2018006 LA - en ID - M2AN_2018__52_1_181_0 ER -
%0 Journal Article %A He, Yinnian %A Zou, Jun %T A priori estimates and optimal finite element approximation of the MHD flow in smooth domains %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 181-206 %V 52 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2018006/ %R 10.1051/m2an/2018006 %G en %F M2AN_2018__52_1_181_0
He, Yinnian; Zou, Jun. A priori estimates and optimal finite element approximation of the MHD flow in smooth domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 1, pp. 181-206. doi: 10.1051/m2an/2018006
[1] and , Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 131 (1996) 41–90. | Zbl | MR | DOI
[2] and , Survey lectures on the mathematical foundations of the finite element method with applications to partial differential equations, edited by . Academic Press, New York (1973). | MR
[3] and , Convergent finite element discretizations of the multi-fluid nonstationary incompressible Magnetohydrodynamics equations. Math. Comput. 79 (2010) 1957–1999. | Zbl | MR | DOI
[4] and , Some estimates for a weighted L2-projection. Math. Comp. 56 (1991) 463–476. | Zbl | MR
[5] , Si un problem al contorno relativo al sistema di equazioni di Stokes. Rend. Semin. Mat. Univ. Padova 31 (1961) 308–340. | Zbl | Numdam | MR
[6] , Finite Element Method for Elliptic Equations. North-Holland Publishing, Amsterdam (1978). | MR
[7] , A stabilized finite element method for the incompressible Magnetohydrodynamics equations. Numer. Math. 87 (2000) 83–111. | Zbl | MR | DOI
[8] , and , Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Oxford Univerisity Press, Oxford (2006). | Zbl | MR | DOI
[9] , Some boundary value problems for differenttial forms on compact Riemannian manifolds. Ann. Mat. Pura Appl. 4 (1979) 159–198. | Zbl | MR | DOI
[10] and , Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin, Heidelberg (1987). | Zbl | MR
[11] , and , On the existence and uniqueness and the finite element approxiamtion of solutions of the equations of stationary incompressible Magneto-hydrodynamics. Math. Comp. 56 (1991) 523–563. | Zbl | MR | DOI
[12] , and , On the global unique solvability of initial-boundary value problems for the coupled modified Navier-Stokes Maxwell equations. J. Math. Fluid Mech. 6 (2004) 462–482. | Zbl | MR | DOI
[13] , Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35 (2015) 767–801. | Zbl | MR | DOI
[14] and , Finite element approximation of the nonstationary Navier-Stokes problem I: regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. | Zbl | MR | DOI
[15] and , Finite element approximation of the nonstationary Navier-Stokes problem III: Smooothing property and high order error estimates for spatial discretization. SIAM J. Numer. Anal. 25 (1988) 489–512. | Zbl | MR | DOI
[16] and , The Electromagneto-Hydrodynamics of Fluids. Wiley, New York (1966).
[17] , Classical Electrodynamics. Wiley, New York (1975). | Zbl | MR
[18] and , On existence and uniqueness of solutions of nonstationary problem for viscous incompressible fluid. Izv.Akad. Nauk SSSR Ser. Math. 21 (1957) 655–680. | Zbl | MR
[19] and , Solution of Some Nonstationary Magnethydrodynamical Problems for Incompressible Fluid. Trusy Steklov Math. Inst. 69 (1960) 115–173. | MR
[20] , , and , Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60 (2010) 19–37. | Zbl | MR | DOI
[21] , Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003). | Zbl | MR | DOI
[22] , , , and , A generalized alternating-direction implicit scheme for incompressible magnetohydrodynamic viscous flows at low magnetic Reynolds number. Appl. Math. Comput. 189 (2007) 1601–1613. | Zbl | MR | DOI
[23] , Convergent finite element discretizations of the nonstationary incompressible Magnetohydrodynamics system. ESAIM: M2AN 42 (2008) 1065–1087. | Zbl | Numdam | MR | DOI
[24] , , , A finite element method for magnetohydrodynamics. Comput. Methods. Appl. Mech. Eng. 190 (2001) 5867–5892. | Zbl | MR | DOI
[25] , Mixed finite element methods for stationary incompressible Magneto-hydrodynamics. Numer. Math. 96 (2004) 771–800. | Zbl | MR | DOI
[26] and , Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36 (1983) 635–664. | Zbl | MR | DOI
[27] , A Textbook of Magnetohydrodynamics. Pergmon Press, Oxford (1965). | MR
[28] , Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Spinger-Verlag, New York (1988). | Zbl | MR | DOI
[29] , Navier-Stokes Equations, Theory and Numerical, 3rd edn. North-Holland, Amsterdam (1983). | Zbl | MR
[30] , Induced trajectories and approxiamate inertial manifolds. ESAIM: M2AN 23 (1989) 541–561. | Zbl | Numdam | MR | DOI
[31] , , Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers. Int. J. Numer. Anal. Model. 10 (2013) 74–98. | Zbl | MR
Cité par Sources :





