An inhomogeneous steady-state problem of radiative-conductive heat transfer in a three-dimensional domain is studied in the framework of the P approximation of the nonlinear complex heat transfer model. The unique solvability of the problem is proved. The Lyapunov stability of solutions is shown.
Accepté le :
DOI : 10.1051/m2an/2017042
Keywords: Radiative heat transfer, diffusion approximation, unique solvability, Lyapunov stability
Chebotarev, Alexander Yu. 1, 2 ; Grenkin, Gleb V. 1, 2 ; Kovtanyuk, Andrey E. 1, 2
@article{M2AN_2017__51_6_2511_0,
author = {Chebotarev, Alexander Yu. and Grenkin, Gleb V. and Kovtanyuk, Andrey E.},
title = {Inhomogeneous steady-state problem of complex heat transfer},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {2511--2519},
year = {2017},
publisher = {EDP Sciences},
volume = {51},
number = {6},
doi = {10.1051/m2an/2017042},
mrnumber = {3745180},
zbl = {1387.35122},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2017042/}
}
TY - JOUR AU - Chebotarev, Alexander Yu. AU - Grenkin, Gleb V. AU - Kovtanyuk, Andrey E. TI - Inhomogeneous steady-state problem of complex heat transfer JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 2511 EP - 2519 VL - 51 IS - 6 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2017042/ DO - 10.1051/m2an/2017042 LA - en ID - M2AN_2017__51_6_2511_0 ER -
%0 Journal Article %A Chebotarev, Alexander Yu. %A Grenkin, Gleb V. %A Kovtanyuk, Andrey E. %T Inhomogeneous steady-state problem of complex heat transfer %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 2511-2519 %V 51 %N 6 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2017042/ %R 10.1051/m2an/2017042 %G en %F M2AN_2017__51_6_2511_0
Chebotarev, Alexander Yu.; Grenkin, Gleb V.; Kovtanyuk, Andrey E. Inhomogeneous steady-state problem of complex heat transfer. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2511-2519. doi: 10.1051/m2an/2017042
M.F. Modest, Radiative Heat Transfer. Academic Press (2003).
, , , and , Numerical methods and optimal control for glass cooling processes. Trans. Theory Stat. Phys. 31 (2002) 513–529. | MR | Zbl | DOI
, , and , SP-approximations of internal radiation in crystal growth of optical materials. J. Cryst. Growth 266 (2004) 264–270. | DOI
, and , Adaptive solution of SP-approximations to radiative heat transfer in glass. Int. J. Therm. Sci. 44 (2005) 1013–1023. | DOI
, and , Optimal control of glass cooling using simplified P theory. Transport Theory Statist. Phys. 39 (2010) 282–311. | MR | Zbl | DOI
and , Optimal control of radiative heat transfer in glass cooling with restrictions on the temperature gradient. Optimal Control Appl. Methods 33 (2012) 157–175. | MR | Zbl | DOI
and , A nonstationary problem of complex heat transfer. Comput. Math. Math. Phys. 54 (2014) 1737–1747. | MR | Zbl | DOI
, Analysis of optimal boundary control for radiative heat transfer modelled by the SP-system. Commun. Math. Sci. 5 (2007) 951–969. | MR | Zbl | DOI
and , Optimal control of a simplified natural convection-radiation model. Commun. Math. Sci. 11 (2013) 679–707. | MR | Zbl | DOI
and , A nonhomogeneous nonstationary complex heat transfer problem. Sib. Èlektron. Mat. Izv. 12 (2015) 562–576. | MR | Zbl
, Existence and uniqueness of solutions of nonlinear systems of conductive-radiative heat transfer equations. Trans. Theory Stat. Phys. 25 (1996) 249–260. | MR | Zbl | DOI
and , An iterative method for solving a complex heat transfer problem. Appl. Math. Comput. 219 (2013) 9356–9362. | MR | Zbl
and , Steady-state problem of complex heat transfer. Comput. Math. Math. Phys. 54 (2014) 719–726. | MR | Zbl | DOI
and , Stationary free convection problem with radiative heat exchange. Differ. Equ. 50 (2014) 1592–1599. | MR | Zbl | DOI
, , and , Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer. J. Math. Anal. Appl. 412 (2014) 520–528. | MR | Zbl | DOI
, , and , Solvability of P approximation of a conductive-radiative heat transfer problem. Appl. Math. Comput. 249 (2014) 247–252. | MR
, , and , Unique solvability of a steady-state complex heat transfer model. Commun. Nonlin. Sci. Numer. Simul. 20 (2015) 776–784. | MR | Zbl | DOI
, , , and , Boundary optimal control problem of complex heat transfer model. J. Math. Anal. Appl. 433 (2016) 1243–1260. | MR | Zbl | DOI
, , and , Time-dependent simplified PN approximation to the equations of radiative transfer. J. Comput. Phys. 226 (2007) 2289–2305. | MR | Zbl | DOI
E. Zeidler, Nonlinear functional analysis and its applications. II/A: Linear monotone operators. Springer, New York (1990). | Zbl
Cité par Sources :





