We formulate a patch test consistent atomistic-to-continuum coupling (a/c) scheme that employs a second-order (potentially higher-order) finite element method in the material bulk. We prove a sharp error estimate in the energy-norm, which demonstrates that this scheme is (quasi-)optimal amongst energy-based sharp-interface a/c schemes that employ the Cauchy–Born continuum model. Our analysis also shows that employing a higher-order continuum discretisation does not yield qualitative improvements to the rate of convergence.
Keywords: Atomistic models, coarse graining, atomistic-to-continuum coupling, quasicontinuum method, error analysis
Dedner, Andreas 1 ; Ortner, Chistoph 1 ; Wu, Huan 1
@article{M2AN_2017__51_6_2263_0,
author = {Dedner, Andreas and Ortner, Chistoph and Wu, Huan},
title = {Analysis of patch-test consistent atomistic-to-continuum coupling with higher-order finite elements},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {2263--2288},
year = {2017},
publisher = {EDP Sciences},
volume = {51},
number = {6},
doi = {10.1051/m2an/2017013},
zbl = {1383.82062},
mrnumber = {3745172},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2017013/}
}
TY - JOUR AU - Dedner, Andreas AU - Ortner, Chistoph AU - Wu, Huan TI - Analysis of patch-test consistent atomistic-to-continuum coupling with higher-order finite elements JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 2263 EP - 2288 VL - 51 IS - 6 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2017013/ DO - 10.1051/m2an/2017013 LA - en ID - M2AN_2017__51_6_2263_0 ER -
%0 Journal Article %A Dedner, Andreas %A Ortner, Chistoph %A Wu, Huan %T Analysis of patch-test consistent atomistic-to-continuum coupling with higher-order finite elements %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 2263-2288 %V 51 %N 6 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2017013/ %R 10.1051/m2an/2017013 %G en %F M2AN_2017__51_6_2263_0
Dedner, Andreas; Ortner, Chistoph; Wu, Huan. Analysis of patch-test consistent atomistic-to-continuum coupling with higher-order finite elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2263-2288. doi: 10.1051/m2an/2017013
and , An optimal Poincaré inequality in l1 for convex domains. Proc. Amer. Math. Soc. 132 (2003) 195–202. | Zbl | MR | DOI
, Quasi-interpolation and a posteriori error analysis in finite element methods. ESAIM: M2AN 33 (1999) 1187–1202. | Zbl | Numdam | MR | DOI
and , Uniform accuracy of the quasicontinuum method. Phys. Rev. B 74 (2006) 214–115.
V. Ehrlacher, C. Ortner and A.V. Shapeev, Analysis of boundary conditions for crystal defect atomistic simulations (2013).
, , A. Shapeev and B. Van Koten. Analysis of blended atomistic/continuum hybrid methods. Numer. Math. 134 (2016) 275–326. | MR | Zbl | DOI
and . Atomstic-to-continuum coupling. Acta Numer. 22 (2013) 397–508. | Zbl | MR | DOI
, The role of the patch test in 2D atomistic-to-continuum coupling methods. ESAIM: M2AN 46 (2012) 1275–1319. | Zbl | Numdam | MR | DOI
C. Ortner and A. Shapeev, Interpolation of lattice functions and applications to atomistic/continuum multiscale methods. Preprint (2012). | arXiv
C. Ortner, A. Shapeev and L. Zhang, (in-)stability and stabilisation of QNL-type atomistic-to-continuum coupling methods. Preprint (2013). | arXiv | MR
C. Ortner and E. Süli, A note on linear elliptic systems on . Preprint (2012). | arXiv
and , Atomistic/continuum blending with ghost force correction. SIAM: J. Sci. Comput. 38 (2016) A346–A375. | Zbl | MR
C. Ortner and L. Zhang, Construction and sharp consistency estimates for atomistic/continuum coupling methods with general interfaces: a 2D model problem. SIAM J. Numer. Anal. (2012) 50. | Zbl | MR
, A priori and a posteriori analysis of the quasinonlocal quasicontinuum method in 1D. Math. Comput. 80 (2011) 1265–1285. | Zbl | MR | DOI
C. Schwab, p- and - finite element methods: theory and applications in solid and fluid mechanics. Oxford Universiy Press, Oxford (1998). | Zbl | MR
, , and , Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region. Phys. Rev. B 69 (2004) 214104.. | DOI
Cité par Sources :






