Operator splitting methods combined with finite element spatial discretizations are studied for time-dependent nonlinear Schrödinger equations. In particular, the Schrödinger–Poisson equation under homogeneous Dirichlet boundary conditions on a finite domain is considered. A rigorous stability and error analysis is carried out for the second-order Strang splitting method and conforming polynomial finite element discretizations. For sufficiently regular solutions the classical orders of convergence are retained, that is, second-order convergence in time and polynomial convergence in space is proven. The established convergence result is confirmed and complemented by numerical illustrations.
Accepté le :
DOI : 10.1051/m2an/2016059
Keywords: Nonlinear Schrödinger equations, operator splitting methods, finite element discretization, stability, local error, convergence
Auzinger, Winfried 1 ; Kassebacher, Thomas 2 ; Koch, Othmar 3 ; Thalhammer, Mechthild 2
@article{M2AN_2017__51_4_1245_0,
author = {Auzinger, Winfried and Kassebacher, Thomas and Koch, Othmar and Thalhammer, Mechthild},
title = {Convergence of a {Strang} splitting finite element discretization for the {Schr\"odinger{\textendash}Poisson} equation},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1245--1278},
year = {2017},
publisher = {EDP Sciences},
volume = {51},
number = {4},
doi = {10.1051/m2an/2016059},
zbl = {1379.65071},
mrnumber = {3702412},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2016059/}
}
TY - JOUR AU - Auzinger, Winfried AU - Kassebacher, Thomas AU - Koch, Othmar AU - Thalhammer, Mechthild TI - Convergence of a Strang splitting finite element discretization for the Schrödinger–Poisson equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 1245 EP - 1278 VL - 51 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2016059/ DO - 10.1051/m2an/2016059 LA - en ID - M2AN_2017__51_4_1245_0 ER -
%0 Journal Article %A Auzinger, Winfried %A Kassebacher, Thomas %A Koch, Othmar %A Thalhammer, Mechthild %T Convergence of a Strang splitting finite element discretization for the Schrödinger–Poisson equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 1245-1278 %V 51 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2016059/ %R 10.1051/m2an/2016059 %G en %F M2AN_2017__51_4_1245_0
Auzinger, Winfried; Kassebacher, Thomas; Koch, Othmar; Thalhammer, Mechthild. Convergence of a Strang splitting finite element discretization for the Schrödinger–Poisson equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1245-1278. doi: 10.1051/m2an/2016059
R.A. Adams, Sobolev Spaces. Academic Press, Orlando, Fla. (1975). | Zbl | MR
, and , Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations. Comput. Phys. Commun. 184 (2013). | Zbl | MR | DOI
, and , Numerical solution of time-dependent nonlinear Schrödinger equations using domain truncation techniques coupled with relaxation scheme. Laser Physics 21 (2011) 1–12. | DOI
, , and , Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part III: The nonlinear case. J. Comput. Appl. Math. 273 (2014) 182–204. | Zbl | MR | DOI
W. Auzinger and O. Koch, Coefficients of various splitting methods. Available at: http://www.asc.tuwien.ac.at/˜winfried/splitting/.
, and , An -adaptive finite element solver for the calculations of the electronic structures. J. Comput. Phys. 231 (2012) 4967–4979. | Zbl | DOI
and , Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6 (2013) 1–135. | Zbl | MR | DOI
, , and , Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT. J. Comput. Phys. 296 (2015) 72–89. | MR | Zbl | DOI
S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 2nd edition. Springer Verlag, New York (2002). | Zbl | MR
and , The three-dimensional Wigner–Poisson problem: Existence, uniqueness and approximation. Math. Methods Appl. Sci. 14 (1991) 35–61. | Zbl | MR | DOI
, On Fourier time-splitting methods for nonlinear Schrödinger equations in the semiclassical limit. SIAM J. Numer. Anal. 51 (2013) 3232–3258. | Zbl | MR | DOI
G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin, Heidelberg, New York (2002). | Zbl | MR
, and , A Kohn–Sham equation solver based on hexahedral finite elements. J. Comput. Phys. 231 (2012) 3166–3180. | Zbl | MR | DOI
and , On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comput. Phys. 165 (2000) 694–716. | Zbl | MR | DOI
, Convergence of a split-step Hermite method for the Gross–Pitaevskii equation. IMA J. Numer. Anal. 31 (2011) 396–415. | Zbl | MR | DOI
W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment. Springer Verlag, Berlin, Heidelberg, New York (1992). | Zbl | MR
E. Hairer, Ch. Lubich and G. Wanner, Geometric Numerical Integration. Springer, Verlag, Berlin, Heidelberg, New York (2002). | Zbl | MR
G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities. Cambridge Univ. Press, Cambridge (1934). | Zbl | MR
, and , Time-dependent multiconfiguration methods for the numerical simulation of photoionization processes of many-electron atoms. Eur. Phys. J. Special Topics 223 (2014) 177–336. | DOI
, and , Global existence, uniqueness and asymptotic behaviour of solutions of the Wigner–Poisson and Schrödinger–Poisson systems. Math. Methods Appl. Sci. 17 (1994) 349–376. | Zbl | MR | DOI
and , A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comp. 67 (1998) 479–499. | Zbl | MR | DOI
and , A posteriori error control and adaptivity for Crank–Nicolson finite element approximations for the linear Schrödinger equation. Numer. Math. 129 (2015) 55–90. | Zbl | MR | DOI
O. Koch and Ch. Lubich, Analysis and time integration of the multi-configuration time-dependent Hartree-Fock equations in electron dynamics. ASC Report 4/2008, Inst. for Anal. and Sci. Comput., Vienna Univ. of Technology (2008).
and , Variational splitting time integration of the MCTDHF equations in electron dynamics. IMA J. Numer. Anal. 31 (2011) 379–395. | Zbl | MR | DOI
, and , Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics. ESAIM: M2AN 47 (2013) 1265–1284. | Zbl | MR | Numdam | DOI
, A time-space adaptive method for the Schrödinger equation. Tach. Rep. 23 (2012).
, On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77 (2008) 2141–2153. | Zbl | MR | DOI
and , Splitting methods. Acta Numer. 11 (2002) 341–434. | Zbl | MR | DOI
M. Miklavčič, Applied Functional Analysis and Partial Differential Equations. World Scientific, Singapore (1998). | Zbl | MR
, , , and , Higher-order adaptive finite-element methods for Kohn–Sham density functional theory. J. Comput. Phys. 231 (2012) 6596–6621. | Zbl | DOI
M.A. Olshanskii and E.E. Tyrtyshnikov, Iterative Methods for Linear Systems. SIAM, Philadelphia, PA, USA (2014). | Zbl | MR
, Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29 (1992) 209–228. | Zbl | MR | DOI
Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, USA, 2nd edition (2003). | Zbl | MR
V. Schauer, Finite element based electronic structure calculations. Universität Stuttgart, Inst. f. Mechanik (Bauwesen), Lehrstuhl I (2014).
W.E. Schiesser, The Numerical Method of Lines. Academic Press, San Diego (1991). | Zbl | MR
, Expokit: A software package for computing matrix exponentials. ACM Trans. Math. Software 24 (1998) 130–156. | Zbl | DOI
and , Three-dimensional Cartesian finite element method for the time dependent Schrödinger equation of molecules in laser fields. J. Chem. Phys. 102 (1995).
, , and , Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration. Phys. Rev. E 74 (2006) 066704. | Zbl | DOI
Cité par Sources :





