@article{M2AN_2016__50_3_633_0,
author = {Beir\~ao da Veiga, L. and Ern, A.},
title = {Preface},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {633--634},
year = {2016},
publisher = {EDP Sciences},
volume = {50},
number = {3},
doi = {10.1051/m2an/2016034},
zbl = {1349.00239},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2016034/}
}
TY - JOUR AU - Beirão da Veiga, L. AU - Ern, A. TI - Preface JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 633 EP - 634 VL - 50 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2016034/ DO - 10.1051/m2an/2016034 LA - en ID - M2AN_2016__50_3_633_0 ER -
Beirão da Veiga, L.; Ern, A. Preface. ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue – Polyhedral discretization for PDE, Tome 50 (2016) no. 3, pp. 633-634. doi: 10.1051/m2an/2016034
, , , and , Mimetic finite difference approximation of flows in fractured porous media. ESAIM: M2AN 50 (2016) 809–832. Doi: | DOI | Zbl | Numdam | MR
, and , The nonconforming virtual element method. ESAIM: M2AN 50 (2016) 879–904. Doi: | DOI | Zbl | Numdam | MR
, , , , and , Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | Zbl | MR | DOI
, , and , The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | Zbl | MR | DOI
L. Beirão da Veiga, K. Lipnikov and G. Manzini, The mimetic finite difference method for elliptic problems. Vol. 11 of MS&A. Model. Simul. Appl. Springer-Verlag (2014). | Zbl | MR
, , and , Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: M2AN 50 (2016) 727–747. Doi: | DOI | Zbl | Numdam | MR
and , Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN 48 (2014) 553–581. | Zbl | Numdam | MR | DOI
, and , Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. | Zbl | MR | DOI
, and , -version discontinuous galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24 (2014) 2009–2041. | Zbl | MR | DOI
, , and , -version discontinuous Galerkin methods for advection-diffusion-reaciton problems on polytopic meshes. ESAIM: M2AN 50 (2016) 699–725. Doi: | DOI | Zbl | Numdam | MR
and , Construction of some minimal finite element systems. ESAIM: M2AN 50 (2016) 833–850. Doi: | DOI | Zbl | Numdam | MR
, and , Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | Zbl | MR | DOI
, and , Bridging the Hybrid High-Order and Hybridizable discontinuous Galerkin methods. ESAIM: M2AN 50 (2016) 635–650. Doi: | DOI | Zbl | Numdam | MR
, and , Geometrically defined basis functions for polyhedral elements with applications to computational electromagnetics. ESAIM: M2AN 50 (2016) 677–698. Doi: | DOI | Zbl | Numdam | MR
D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69 of Math. Appl. Springer-Verlag, Berlin (2012). | Zbl | MR
and , A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Engrg. 283 (2015) 1–21. | Zbl | MR | DOI
, and , An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. | Zbl | MR | DOI
, , and , A unified approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265–295. | Zbl | MR | DOI
, , and , Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23 (2013) 2395–2432. | Zbl | MR | DOI
, and , Gradient schemes: Generic tools for the numerical analysis of diffusion equations. ESAIM: M2AN 50 (2016) 749–781. Doi: | DOI | Zbl | Numdam | MR
and , Interpolation error estimates for harmonic coordinates on polytopes. ESAIM: M2AN 50 (2016) 651–676. Doi: | DOI | Zbl | Numdam | MR
, and , The arbitrary order mixed mimetic finite difference method for the diffusion equation. ESAIM: M2AN 50 (2016) 851–877. Doi: | DOI | Zbl | Numdam | MR
, and , A plane wave virtual element method for the Helmholtz problem. ESAIM: M2AN 50 (2016) 783–808. Doi: | DOI | Zbl | Numdam | MR
and , Conforming polygonal finite elements. Internat. J. Numer. Methods Engrg. 61 (2004) 2045–2066. | Zbl | MR | DOI
, , and , Polygonal finite elements for topology optimization: A unifying paradigm. Internat. J. Numer. Methods Engrg. 82 (2010) 671–698. | Zbl | DOI
and , A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241 (2013) 103–115. | Zbl | MR | DOI
Cité par Sources :






