Numerical approximation of stochastic conservation laws on bounded domains
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 225-278

This paper is devoted to the study of finite volume methods for the discretization of scalar conservation laws with a multiplicative stochastic force defined on a bounded domain D of R d with Dirichlet boundary conditions and a given initial data in L (D). We introduce a notion of stochastic entropy process solution which generalizes the concept of weak entropy solution introduced by F.Otto for such kind of hyperbolic bounded value problems in the deterministic case. Using a uniqueness result on this solution, we prove that the numerical solution converges to the unique stochastic entropy weak solution of the continuous problem under a stability condition on the time and space steps.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016020
Classification : 35L60, 60H15, 35L60
Keywords: Stochastic PDE, first-order hyperbolic equation, multiplicative noise, finite volume method, monotone scheme, Dirichlet boundary conditions

Bauzet, Caroline 1 ; Charrier, Julia 2 ; Gallouët, Thierry 2

1 LMA, Aix-Marseille Univ, CNRS, UPR 7051, Centrale Marseille, 13402 Marseille cedex 20, France.
2 I2M, Aix-Marseille Univ, CNRS, UMR 7373, Centrale Marseille, 13453 Marseille, France.
@article{M2AN_2017__51_1_225_0,
     author = {Bauzet, Caroline and Charrier, Julia and Gallou\"et, Thierry},
     title = {Numerical approximation of stochastic conservation laws on bounded domains},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {225--278},
     year = {2017},
     publisher = {EDP Sciences},
     volume = {51},
     number = {1},
     doi = {10.1051/m2an/2016020},
     zbl = {1368.65007},
     mrnumber = {3601008},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2016020/}
}
TY  - JOUR
AU  - Bauzet, Caroline
AU  - Charrier, Julia
AU  - Gallouët, Thierry
TI  - Numerical approximation of stochastic conservation laws on bounded domains
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 225
EP  - 278
VL  - 51
IS  - 1
PB  - EDP Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2016020/
DO  - 10.1051/m2an/2016020
LA  - en
ID  - M2AN_2017__51_1_225_0
ER  - 
%0 Journal Article
%A Bauzet, Caroline
%A Charrier, Julia
%A Gallouët, Thierry
%T Numerical approximation of stochastic conservation laws on bounded domains
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 225-278
%V 51
%N 1
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2016020/
%R 10.1051/m2an/2016020
%G en
%F M2AN_2017__51_1_225_0
Bauzet, Caroline; Charrier, Julia; Gallouët, Thierry. Numerical approximation of stochastic conservation laws on bounded domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 225-278. doi: 10.1051/m2an/2016020

E.J. Balder, Lectures on Young measure theory and its applications in economics. Workshop on Measure Theory and Real Analysis (Italian), Grado (1997). Rend. Istit. Mat. Univ. Trieste 31 (2000) 1–69. | Zbl | MR

C. Bauzet, On a time-splitting method for a scalar conservation law with a multiplicative stochastic perturbation and numerical experiments. J. Evol. Equ. 14 (2014) 333–356. | Zbl | MR | DOI

C. Bauzet, G. Vallet and P. Wittbold, The Cauchy problem for a conservation law with a multiplicative stochastic perturbation. J. Hyperbolic Differ. Eq. 9 (2012) 661–709. | Zbl | MR | DOI

C. Bauzet, J. Charrier and T. Gallouët, Convergence of flux-splitting finite volume schemes for hyperbolic scalar conservation laws with a multiplicative stochastic perturbation. Math. Comp. 85 (2016) 2777–2813. | Zbl | MR | DOI

C. Bauzet, J. Charrier and T. Gallouët, Convergence of monotone finite volume schemes for hyperbolic scalar conservation laws with a multiplicative noise. Stoch. Partial Differ. Eq. Anal. Comput. 4 (2016) 150–223. | Zbl | MR

C. Bauzet, G. Vallet and P. Wittbold, The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation. J. Funct. Anal. 4 (2014) 2503–2545. | Zbl | MR | DOI

I.H. Biswas and A.K. Majee, Stochastic conservation laws: Weak-in-time formulation and strong entropy condition. J. Funct. Anal. 7 (2014) 2199–2252. | Zbl | MR | DOI

C. Chainais-Hillairet, Second-order finite-volume schemes for a non-linear hyperbolic equation: error estimate. Math. Methods Appl. Sci. 23 (2000) 467–490. | Zbl | MR | DOI

G.-Q. Chen, Q. Ding and K.H. Karlsen, On nonlinear stochastic balance laws. Arch. Ration. Mech. Anal. 204 (2012) 707–743. | Zbl | MR | DOI

G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Vol. 44 of Encycl. Math. Appl. Cambridge University Press, Cambridge (1992). | Zbl | MR

A. Debussche and J. Vovelle, Scalar conservation laws with stochastic forcing. J. Funct. Anal. 259 (2010) 1014–1042. | Zbl | MR | DOI

R. Eymard, T. Gallouët and R. Herbin, Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation. Chinese Ann. Math. Ser. B 16 (1995) 1–14. A Chinese summary appears in Chinese Ann. Math. Ser. A 16 (1995) 119. | Zbl | MR

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Vol. VII of Handb. Numer. Anal. North-Holland, Amsterdam (2000) 713–1020. | Zbl | MR

J. Feng and D. Nualart, Stochastic scalar conservation laws. J. Funct. Anal. 255 (2008) 313–373. | Zbl | MR | DOI

M. Hofmanová, Bhatnagar-gross-krook approximation to stochastic scalar conservation laws. Ann. Inst. Henri Poincaré Probab. Statist. (2014). | MR | Numdam

H. Holden and N.H. Risebro, A stochastic approach to conservation laws. In Third International Conference on Hyperbolic Problems. Vols. I, II (Uppsala, 1990). Studentlitteratur, Lund (1991) 575–587. | Zbl | MR

K. Kobayasi and D. Noboriguchi, A stochastic conservation law with nonhomogeneous Dirichlet boundary conditions. Acta Math. Vietnam. 41 (2016) 607–632. | Zbl | MR | DOI

I. Kröker and C. Rohde, Finite volume schemes for hyperbolic balance laws with multiplicative noise. Appl. Numer. Math. 62 (2012) 441–456. | Zbl | MR | DOI

F. Otto, Initial-boundary value problem for a scalar conservation law. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 729–734. | Zbl | MR

E. Yu. Panov, On measure-valued solutions of the Cauchy problem for a first-order quasilinear equation. Izv. Ross. Akad. Nauk Ser. Mat. 60 (1996) 107–148. | Zbl | MR

G. Vallet, Stochastic perturbation of nonlinear degenerate parabolic problems. Differ. Integral Eq. 21 (2008) 1055–1082. | Zbl | MR

J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math. 90 (2002) 563–596. | Zbl | MR | DOI

Cité par Sources :