Based on results of E. DiBenedetto and D. Hoff we propose an explicit finite-difference scheme for one dimensional Generalized Porous Medium Equations . The scheme allows to track the moving free boundaries, and captures the so-called hole filling phenomenon when free boundaries collide. We prove the convergence of the discrete solution when the mesh parameter . Finally, we provide numerical evidence of the convergence of the scheme.
Keywords: Generalized porous medium equation, interface tracking, hole filling, finite-difference
Monsaingeon, Léonard 1
@article{M2AN_2016__50_4_1011_0,
author = {Monsaingeon, L\'eonard},
title = {An explicit finite-difference scheme for one-dimensional {Generalized} {Porous} {Medium} {Equations:} {Interface} tracking and the hole filling problem},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1011--1033},
year = {2016},
publisher = {EDP Sciences},
volume = {50},
number = {4},
doi = {10.1051/m2an/2015063},
zbl = {1457.65059},
mrnumber = {3521710},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2015063/}
}
TY - JOUR AU - Monsaingeon, Léonard TI - An explicit finite-difference scheme for one-dimensional Generalized Porous Medium Equations: Interface tracking and the hole filling problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 1011 EP - 1033 VL - 50 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2015063/ DO - 10.1051/m2an/2015063 LA - en ID - M2AN_2016__50_4_1011_0 ER -
%0 Journal Article %A Monsaingeon, Léonard %T An explicit finite-difference scheme for one-dimensional Generalized Porous Medium Equations: Interface tracking and the hole filling problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 1011-1033 %V 50 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2015063/ %R 10.1051/m2an/2015063 %G en %F M2AN_2016__50_4_1011_0
Monsaingeon, Léonard. An explicit finite-difference scheme for one-dimensional Generalized Porous Medium Equations: Interface tracking and the hole filling problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 4, pp. 1011-1033. doi: 10.1051/m2an/2015063
L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Math. Monogr. Clarendon Press, Oxford, New York (2000). | Zbl | MR
, Regularity properties of flows through porous media: The interface. Arch. Rational Mech. Anal. 37 (1970) 1–10. | Zbl | MR | DOI
, Regularity propeties of flows through porous media. SIAM J. Appl. Math. 17 (1969) 461–467. | Zbl | MR | DOI
and , Régularité des solutions de l’équation des milieux poreux dans . C. R. Acad. Sci. Paris Sér. A-B 288 (1979) A103–A105. | Zbl | MR
, , and , Lipschitz continuity of solutions and interfaces of the -dimensional porous medium equation. Indiana Univ. Math. J. 36 (1987) 373–401. | Zbl | MR | DOI
and , regularity of the free boundary for the -dimensional porous media equation. Commun. Pure Appl. Math. 43 (1990) 885–902. | Zbl | MR | DOI
and , Regularizing effects for . Trans. Amer. Math. Soc. 274 (1982) 159–168. | Zbl | MR
and , Nonnegative solutions of generalized porous medium equations. Rev. Mat. Iberoamericana 2 (1986) 267–305. | Zbl | MR | DOI
P. Daskalopoulos and C.E. Kenig, Degenerate diffusions. Initial value problems and local regularity theory. Vol. 1 of EMS Tracts Math. European Mathematical Society (EMS), Zürich (2007). | Zbl | MR
and , Free-boundary regularity for generalized porous medium equations. Commun. Pure Appl. Anal. 2 (2003) 481–494. | Zbl | MR | DOI
and , Regularity of solutions and interfaces of a generalized porous medium equation in . Ann. Mat. Pura Appl. 158 (74) 51–74. | Zbl | MR
F. del Teso and J.L. Vázquezn, Finite difference method for a general fractional porous medium equation. Preprint arXiv:1307.2474 (2013).
E. DiBenedetto, Degenerate parabolic equations. Universitext. Springer-Verlag, New York (1993). | Zbl | MR
and , An interface tracking algorithm for the porous medium equation. Trans. Amer. Math. Soc. 284 (1984) 463–500. | Zbl | MR | DOI
, Hölder continuity of solutions of parabolic equations. J. London Math. Soc. 13 (1976) 103–106. | Zbl | MR | DOI
and , A finite difference approach to some degenerate nonlinear parabolic equations. SIAM J. Appl. Math. 20 (223) 199–223. | Zbl | MR
, A linearly implicit finite-difference scheme for the one-dimensional porous medium equation. Math. Comput. 45 (1985) 23–33. | Zbl | MR | DOI
and , A finite difference scheme for some nonlinear diffusion equations in an absorbing medium: support splitting phenomena. SIAM J. Numer. Anal. 40 (2002) 945–964. | Zbl | MR | DOI
, Continuity of solutions of a singular parabolic equation. Nonlin. Anal. 7 (1983) 387–409. | Zbl | MR | DOI
and , Numerical approximations to interface curves for a porous media equation. Hiroshima Math. J. 13 (1983) 273–294. | Zbl | MR | DOI
, Numerically repeated support splitting and merging phenomena in a porous media equation with strong absorption. J. Math-Industry 3 (2011) 61–68. | Zbl | MR
J.L. Vázquez, The porous medium equation. Oxford Math. Monogr. The Clarendon Press, Oxford University Press, Oxford (2007). Mathematical theory. | Zbl | MR
and , Numerical simulation for porous medium equation by local discontinuous Galerkin finite element method. J. Sci. Comput. 38 (2009) 127–148. | Zbl | MR | DOI
Cité par Sources :






