We analyze upwind difference methods for strongly degenerate convection-diffusion equations in several spatial dimensions. We prove that the local -error between the exact and numerical solutions is , where is the spatial dimension and is the grid size. The error estimate is robust with respect to vanishing diffusion effects. The proof makes effective use of specific kinetic formulations of the difference method and the convection-diffusion equation. This paper is a continuation of [K.H. Karlsen, N.H. Risebro E.B. Storrøsten, Math. Comput. 83 (2014) 2717–2762], in which the one-dimensional case was examined using the Kružkov−Carrillo entropy framework.
Keywords: Degenerate convection-diffusion equations, entropy conditions, finite difference methods, error estimates
Karlsen, Kenneth Hvistendahl 1 ; Risebro, Nils Henrik 1 ; Storrøsten, Erlend Briseid 1
@article{M2AN_2016__50_2_499_0,
author = {Karlsen, Kenneth Hvistendahl and Risebro, Nils Henrik and Storr{\o}sten, Erlend Briseid},
title = {On the convergence rate of finite difference methods for degenerate convection-diffusion equations in several space dimensions},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {499--539},
year = {2016},
publisher = {EDP Sciences},
volume = {50},
number = {2},
doi = {10.1051/m2an/2015057},
mrnumber = {3482553},
zbl = {1342.65182},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2015057/}
}
TY - JOUR AU - Karlsen, Kenneth Hvistendahl AU - Risebro, Nils Henrik AU - Storrøsten, Erlend Briseid TI - On the convergence rate of finite difference methods for degenerate convection-diffusion equations in several space dimensions JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 499 EP - 539 VL - 50 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2015057/ DO - 10.1051/m2an/2015057 LA - en ID - M2AN_2016__50_2_499_0 ER -
%0 Journal Article %A Karlsen, Kenneth Hvistendahl %A Risebro, Nils Henrik %A Storrøsten, Erlend Briseid %T On the convergence rate of finite difference methods for degenerate convection-diffusion equations in several space dimensions %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 499-539 %V 50 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2015057/ %R 10.1051/m2an/2015057 %G en %F M2AN_2016__50_2_499_0
Karlsen, Kenneth Hvistendahl; Risebro, Nils Henrik; Storrøsten, Erlend Briseid. On the convergence rate of finite difference methods for degenerate convection-diffusion equations in several space dimensions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 499-539. doi: 10.1051/m2an/2015057
, and , Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations. J. Hyperbolic Differ. Equ. 7 (2010) 1–67. | MR | Zbl | DOI
and , On uniqueness techniques for degenerate convection-diffusion problems. Int. J. Dyn. Syst. Differ. Eq. 4 (2012) 3–34. | MR | Zbl
, and , Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems. Math. Comput. 73 (2004) 63–94. | MR | Zbl | DOI
and , Error bounds for monotone approximation schemes for Hamilton−Jacobi−Bellman equations. SIAM J. Numer. Anal. 43 (2005) 540–558. | MR | Zbl | DOI
and , Kružkov’s estimates for scalar conservation laws revisited. Trans. Amer. Math. Soc. 350 (1998) 2847–2870. | MR | Zbl | DOI
, and , Diffusive BGK approximations for nonlinear multidimensional parabolic equations. Indiana Univ. Math. J. 49 (2000) 723–749. | MR | Zbl | DOI
and . A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs. Commun. Pure Appl. Math. 61 (2008) 1–17. | MR | Zbl | DOI
, Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147 (1999) 269–361. | MR | Zbl | DOI
and , Un principe du maximum pour des opérateurs monotones. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 823–827. | MR | Zbl | DOI
and , Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 20 (2003) 645–668. | MR | Zbl | Numdam | DOI
and , Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients. Commun. Pure Appl. Anal. 4 (2005) 241–266. | MR | Zbl | DOI
and , L1-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations. Trans. Amer. Math. Soc. 358 (2006) 937–963. | MR | Zbl | DOI
, Continuous dependence and error estimation for viscosity methods. Acta Numer. 12 (2003) 127–180. | MR | Zbl | DOI
and , Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93 (1971) 265–298. | MR | Zbl | DOI
and , Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput. 43 (1984) 1–19. | MR | Zbl | DOI
C.M. Dafermos, Hyperbolic conservation laws in continuum physics. Vol. 325 of Grundl. Math. Wiss. [Fundamental Principles of Mathematical Sciences]. 3rd edition Springer-Verlag, Berlin (2010). | MR | Zbl
and , Discrete approximations of BV solutions to doubly nonlinear degenerate parabolic equations. Numer. Math. 86 (2000) 377–417. | MR | Zbl | DOI
and , Monotone difference approximations of BV solutions to degenerate convection-diffusion equations. SIAM J. Numer. Anal. 37 (2000) 1838–1860. | MR | Zbl | DOI
and , An error estimate for viscous approximate solutions of degenerate parabolic equations. J. Nonlin. Math. Phys. 9 (2002) 262–281. | MR | Zbl | DOI
, and , Error estimate for approximate solutions of a nonlinear convection-diffusion problem. Adv. Differ. Equ. 7 (2002) 419–440. | MR | Zbl
, , and , Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92 (2002) 41–82. | MR | Zbl | DOI
H. Holden, K.H. Karlsen, K.-A. Lie and N.H. Risebro, Splitting methods for partial differential equations with rough solutions. EMS Series of Lect. Math. Analysis and MATLAB programs. European Mathematical Society (EMS), Zürich (2010). | MR | Zbl
and , Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients. ESAIM: M2AN 35 (2001) 239–269. | MR | Zbl | Numdam | DOI
, , An error estimate for the finite difference approximation to degenerate convection-diffusion equations. Numer. Math. 121 (2012) 367–395. | MR | Zbl | DOI
, , L1 error estimates for difference approximations of degenerate convection-diffusion equations. Math. Comput. 83 (2014) 2717–2762. | MR | Zbl | DOI
, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228–255. | MR | Zbl
, The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients. Appl. Math. Optim. 52 (2005) 365–399. | MR | Zbl | DOI
N.N. Kuznecov, The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation. Ž. Vyčisl. Mat. i Mat. Fiz. 16 (1976) 1489–1502, 1627. | MR | Zbl
, and , A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc. 7 (1994) 169–191. | MR | Zbl | DOI
and , Optimal rate of convergence for anisotropic vanishing viscosity limit of a scalar balance law. SIAM J. Math. Anal. 34 (2003) 1300–1307. | MR | Zbl | DOI
, A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations. ESAIM: M2AN 35 (2001) 355–387. | MR | Zbl | Numdam | DOI
N.H. Pavel, Differential equations, flow invariance and applications. Vol. 113 of Res. Notes Math. Pitman (Advanced Publishing Program), Boston, MA (1984). | MR | Zbl
, Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure. J. Math. Pures Appl. 77 (1998) 1055–1064. | MR | Zbl | DOI
, On the generators of non-negative contraction semigroups in Banach lattices. J. Math. Soc. Japan 20 (1968) 423–436. | MR | Zbl | DOI
and , The Cauchy problem for second order quasilinear degenerate parabolic equations. Mat. Sb. (N.S.) 78 (1969) 374–396. | MR | Zbl
and , Some properties of functions in BVx and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations. Northeast. Math. J. 5 (1989) 395–422. | MR | Zbl
Cité par Sources :






