We propose a new spectral method for solving multi-dimensional second order elliptic equations with varying coefficients in the whole space. This method employs an orthogonal family of quasi-rational functions recently discovered by Arar and Boulmezaoud. After proving an error estimate, we present some computational tests which demonstrate the efficiency of the method and the significance of its developmental potential.
Keywords: Unbounded domains, spectral methods, rational functions, approximation, the whole space
Boulmezaoud, T.Z. 1 ; Arar, N. 2 ; Kerdid, N. 3 ; Kourta, A. 2
@article{M2AN_2016__50_1_263_0,
author = {Boulmezaoud, T.Z. and Arar, N. and Kerdid, N. and Kourta, A.},
title = {Discretization by rational and quasi-rational functions of multi-dimensional elliptic problems in the whole space},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {263--288},
year = {2016},
publisher = {EDP Sciences},
volume = {50},
number = {1},
doi = {10.1051/m2an/2015042},
zbl = {1337.65164},
mrnumber = {3460109},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2015042/}
}
TY - JOUR AU - Boulmezaoud, T.Z. AU - Arar, N. AU - Kerdid, N. AU - Kourta, A. TI - Discretization by rational and quasi-rational functions of multi-dimensional elliptic problems in the whole space JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 263 EP - 288 VL - 50 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2015042/ DO - 10.1051/m2an/2015042 LA - en ID - M2AN_2016__50_1_263_0 ER -
%0 Journal Article %A Boulmezaoud, T.Z. %A Arar, N. %A Kerdid, N. %A Kourta, A. %T Discretization by rational and quasi-rational functions of multi-dimensional elliptic problems in the whole space %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 263-288 %V 50 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2015042/ %R 10.1051/m2an/2015042 %G en %F M2AN_2016__50_1_263_0
Boulmezaoud, T.Z.; Arar, N.; Kerdid, N.; Kourta, A. Discretization by rational and quasi-rational functions of multi-dimensional elliptic problems in the whole space. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 1, pp. 263-288. doi: 10.1051/m2an/2015042
and , Rotationally invariant quadratures for the sphere. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 465 (2009) 3103–3125. | Zbl | MR
, and , Weighted Sobolev spaces for Laplace’s equation in . J. Math. Pures Appl. 73 (1994) 579–606. | Zbl | MR
and , Eigenfunctions of a weighted Laplace operator in the whole space. J. Math. Anal. Appl. 400 (2013) 161–173. | Zbl | MR | DOI
K. Atkinson and W. Han, Spherical harmonics and approximations on the unit sphere: An introduction. Vol. 2044 of Lect. Notes Math. Springer, Heidelberg (2012). | Zbl | MR
and , Radiation boundary conditions for wavelike equations. Commun. Pure Appl. Math. 33 (1980) 707–725. | Zbl | MR | DOI
, A perfectly matched layer for absorption of electromagnetics waves. J. Comput. Phys. 114 (1994) 185–200. | Zbl | MR | DOI
. Perfectly matched layer for the fdtd solution of wave-structure interaction problems. IEEE Trans. Antennas Propag. 44 (1996) 110–117,. | DOI
Ch. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques, Vol. 10 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer–Verlag, Paris (1992). | Zbl | MR
, Infinite elements. Int. J. Numer. Methods Engrg. 11 (1977) 53–64. | Zbl | DOI
and . Diffraction and refraction of surface waves using finite and infinite elements. Int. J. Numer. Methods Engrg. 11 (1977) 1271–1290. | Zbl | MR | DOI
. On the Laplace operator and on the vector potential problems in the half-space: an approach using weighted spaces. Math. Methods Appl. Sci. 26 (2003) 633–669. | Zbl | MR | DOI
, On the invariance of weighted Sobolev spaces under Fourier transform. C. R. Math. Acad. Sci. Paris 339 (2004) 861–866. | Zbl | MR | DOI
, Inverted finite elements: a new method for solving elliptic problems in unbounded domains. ESAIM: M2AN 39 (2005) 109–145. | Zbl | MR | Numdam | DOI
T.Z. Boulmezaoud and K. Kaliche, A new numerical method for the model of solvation in continuum anisotropic dielectrics. In preparation (2015).
and , On the steady Oseen problem in the whole space. Hiroshima Math. J. 35 (2005) 371–401. | Zbl | MR | DOI
, and , Numerical approximation of second-order elliptic problems in unbounded domains. J. Sci. Comput. 60 (2014) 295–312. | Zbl | MR | DOI
, Orthogonal rational functions on a semi-infinite interval. J. Comput. Phys. 70 (1987) 63–88. | Zbl | MR | DOI
, Spectral methods using rational basis functions on an infinite interval. J. Comput. Phys. 69 (1987) 112–142. | Zbl | MR | DOI
C.A. Brebbia, J.C.F. Telles and L.C. Wrobel, Boundary Element Techniques. Springer-Verlag, Berlin (1984). | Zbl | MR
F. Brezzi, C. Johnson and J.-C. Nédélec, On the Coupling of Boundary Integral and Finite Element Methods. In Proc. of the Fourth Symposium on Basic Problems of Numerical Mathematics Plzevn. Charles Univ., Prague (1978) 103–114. | Zbl | MR
, A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion. J. Acoust. Soc. Amer. 96 (1994) 2798–2816. | MR | DOI
, and , Spectral methods for exterior elliptic problems. Numer. Math. 46 (1985) 505–520. | Zbl | MR | DOI
, and , On the -adaptive coupling of FE and BE for viscoplastic and elastoplastic interface problems. J. Comput. Appl. Math. 75 (1996) 345–363. | Zbl | MR | DOI
, Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier Grenoble 14 (1964) 345–444. | Zbl | MR | Numdam | DOI
Ph.-G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam (1978). | Zbl | MR
D.L. Colton and R. Kress, Integral equation methods in scattering theory. Pure Appl. Math. John Wiley & Sons Inc., New York (1983). | Zbl | MR
R. Cools, Constructing cubature formulae: the science behind the art. In vol. 6 of Acta Numer. Cambridge Univ. Press, Cambridge (1997) 1–54. | Zbl | MR
and , Coupling of finite and boundary element methods for an elastoplastic interface problem. SIAM J. Numer. Anal. 27 (1990) 1212–1226. | Zbl | MR | DOI
, and , Symmetric coupling of finite elements and boundary elements for a parabolic-elliptic interface problem. Quart. Appl. Math. 48 (1990) 265–279. | Zbl | MR | DOI
and , Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31 (1977) 629–651. | Zbl | MR | DOI
and , Radiation boundary conditions for acoustic and elastic wave calculations. Commun. Pure Appl. Math. 32 (1979) 313–357. | Zbl | MR | DOI
, Computational aspects of pseudospectral Laguerre approximations. Appl. Numer. Math. 6 (1990) 447–457. | Zbl | MR | DOI
and , Approximations of some diffusion evolution equations in unbounded domains by Hermite functions. Math. Comput. 57 (1990) 597–619. | Zbl | MR | DOI
and , Solution of D-Laplace and Helmholtz equations in exterior domains using -infinite elements. Comput. Methods Appl. Mech. Engrg. 137 (1996) 239–273. | Zbl | MR | DOI
J. Giroire, Études de quelques problèmes aux limites extérieurs et résolution par équations intégrales. Ph.D. thesis, Université Pierre et Marie Curie, Paris (1987).
and , Numerical solution of an exterior Neumann problem using a double layer potential. Math. Comput. 32 (1978) 973–990. | Zbl | MR | DOI
, and , A rational approximation and its applications to differential equations on the half line. J. Sci. Comput. 15 (2000) 117–147. | Zbl | MR | DOI
, Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46 (1971) 227–272. | Zbl | MR | Numdam
W.J. Hehre, L. Radom, P.V.R. Schleyer and J.A. Pople, Ab initio molecular orbital theory. Wiley (1986).
and , On the coupling of boundary integral and finite element methods. Math. Comput. 35 (1980) 1063–1079. | Zbl | MR | DOI
and , Localized linear polynomial operators and quadrature formulas on the sphere. SIAM J. Numer. Anal. 47 (2008/09) 440–466. | Zbl | MR
and , Finite difference model for infinite media. J. Eng. Mech. EMR 95 (1969) 859–877.
, and , Reappraisal of Laguerre type spectral methods. La Recherche Aerospatiale 6 (1985) 13–35. | Zbl | MR
, Optimal numerical integration on a sphere. Math. Comput. 17 (1963) 361–383. | Zbl | MR | DOI
C. Müller, Spherical harmonics. Vol. 17 of Lect. Notes Math. Springer-Verlag, Berlin (1966). | Zbl | MR
C. Müller, Analysis of Spherical Symmetries in Euclidean Spaces. Vol. 129 of Applied Mathematical Sciences. Springer (1998). | Zbl | MR
A. Ralston and Ph. Rabinowitz, A first course in numerical analysis, 2nd edition. Dover Publications, Inc., Mineola, New York (2001). | Zbl | MR
, Spherical harmonics. Amer. Math. Monthly 73 (1966) 115–121. | Zbl | MR | DOI
Cité par Sources :





