Upper bound limit analysis allows one to evaluate directly the ultimate load of structures without performing a cumbersome incremental analysis. In order to numerically apply this method to thin plates in bending, several authors have proposed to use various finite elements discretizations. We provide in this paper a mathematical analysis which ensures the convergence of the finite element method, even with finite elements with discontinuous derivatives such as the quadratic 6 node Lagrange triangles and the cubic Hermite triangles. More precisely, we prove the -convergence of the discretized problems towards the continuous limit analysis problem. Numerical results illustrate the relevance of this analysis for the yield design of both homogeneous and non-homogeneous materials.
DOI : 10.1051/m2an/2015040
Keywords: Bounded Hessian functions, Finite element method, Γ-convergence
Bleyer, Jérémy 1 ; Carlier, Guillaume 2 ; Duval, Vincent 3 ; Mirebeau, Jean-Marie 2 ; Peyré, Gabriel 2
@article{M2AN_2016__50_1_215_0,
author = {Bleyer, J\'er\'emy and Carlier, Guillaume and Duval, Vincent and Mirebeau, Jean-Marie and Peyr\'e, Gabriel},
title = {A $\Gamma{}${-Convergence} {Result} for the {Upper} {Bound} {Limit} {Analysis} of {Plates}},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {215--235},
year = {2016},
publisher = {EDP Sciences},
volume = {50},
number = {1},
doi = {10.1051/m2an/2015040},
zbl = {1353.74068},
mrnumber = {3460107},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2015040/}
}
TY - JOUR
AU - Bleyer, Jérémy
AU - Carlier, Guillaume
AU - Duval, Vincent
AU - Mirebeau, Jean-Marie
AU - Peyré, Gabriel
TI - A $\Gamma{}$-Convergence Result for the Upper Bound Limit Analysis of Plates
JO - ESAIM: Mathematical Modelling and Numerical Analysis
PY - 2016
SP - 215
EP - 235
VL - 50
IS - 1
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/m2an/2015040/
DO - 10.1051/m2an/2015040
LA - en
ID - M2AN_2016__50_1_215_0
ER -
%0 Journal Article
%A Bleyer, Jérémy
%A Carlier, Guillaume
%A Duval, Vincent
%A Mirebeau, Jean-Marie
%A Peyré, Gabriel
%T A $\Gamma{}$-Convergence Result for the Upper Bound Limit Analysis of Plates
%J ESAIM: Mathematical Modelling and Numerical Analysis
%D 2016
%P 215-235
%V 50
%N 1
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2015040/
%R 10.1051/m2an/2015040
%G en
%F M2AN_2016__50_1_215_0
Bleyer, Jérémy; Carlier, Guillaume; Duval, Vincent; Mirebeau, Jean-Marie; Peyré, Gabriel. A $\Gamma{}$-Convergence Result for the Upper Bound Limit Analysis of Plates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 1, pp. 215-235. doi: 10.1051/m2an/2015040
R.A. Adams, Sobolev Spaces. Academic Press New York (1975). | Zbl | MR
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Math. Monogr. Oxford University Press (2000). | Zbl | MR
and , Existence result and discontinuous finite element discretization for a plane stresses hencky problem. Math. Meth. Appl. Sci. 11 (1989) 169–184. | Zbl | MR | DOI
and , On the performance of non-conforming finite elements for the upper bound limit analysis of plates. Int. J. Numer. Methods Eng. 94 (2013) 308–330. | Zbl | MR | DOI
M.W. Bræstrup, Yield-line Theory and Limit Analysis of Plates and Slabs. Danmarks Tekniske Højskole, Afdelingen for Bærende Konstruktioner (1971).
A. Braides, Gamma-convergence for Beginners. Oxford University Press, USA (2002). | Zbl | MR
S.C. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods. Texts Appl. Math. Springer (2008). | Zbl | MR
and , Limit analysis of plates- a finite element formulation. Struct. Eng. Mech. 8 (1999) 325–341. | DOI
and , Justification of the 2-dimensional linear plate model. J. Mécanique 18 (1979) 315–344. | Zbl | MR
G. Dal Maso, An Introduction to -Convergence. Vol. 8 of Progr. Nonlin. Differ. Eq. Appl. Birkhäuser, Boston, MA (1993). | Zbl | MR
, Problèmes variationnels en plasticité parfaite des plaques. Numer. Funct. Anal. Optim. 6 (1983) 73–119. | Zbl | MR | DOI
, Fonctions à hessien borné. Ann. Inst. Fourier 34 (1984) 155–190. | Zbl | MR | Numdam | DOI
, Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity. Archive for Rational Mechanics and Anal. 105 (1989) 123–161. | Zbl | MR | DOI
and , Convex function of a measure and its applications. Indiana Univ. Math. J. 33 (1984) 673–709. | Zbl | MR | DOI
, Limit analysis for plates: the exact solution for a clamped square plate of isotropic homogeneous material obeying the square yield criterion and loaded by uniform pressure. Philos. Trans. Roy. Soc. London. Ser. A, Math. Phys. Sci. 277 (1974) 121–155. | Zbl
, Fonction convexe d’une mesure. C.R. Acad. Sci. Paris 301 (1985) 687–690. | Zbl | MR
, Étude dans d’un modèle de plaques élastoplastiques comportant une non-linéarité géométrique. ESAIM: M2AN 19 (1985) 235–283. | Zbl | MR | Numdam | DOI
T. Hadhri, Présentation et analyse mathématique de quelques modèles pour des structures élastoplastiques homogènes ou hétérogènes. Thèse d’état, Université Pierre et Marie Curie, Paris (1986).
, Prise en compte d’une force linéique de frontière dans un modèle de plaques de Hencky comportant une non-linéarité géométrique. ESAIM: M2AN 22 (1988) 457–468. | Zbl | MR | Numdam | DOI
and , Numerical methods for the limit analysis of plates. J. Appl. Mech. 35 (1968) 796. | Zbl | DOI
, On the identification of yield-line collapse mechanisms. Eng. Struct. 18 (1996) 332–337. | DOI
. Mechanism determination by automated yield-line analysis. Struct. Eng. 72 (1994) 323–323.
, and , Limit analysis of plates using the EFG method and second-order cone programming. Int. J. Numer. Methods Eng. 78 (2009) 1532–1552. | Zbl | MR | DOI
, and , Upper and lower bound limit analysis of plates using FEM and second-order cone programming. Comput. Struct. 88 (2010) 65–73. | DOI
Mosek, The Mosek optimization toolbox for MATLAB manual (2008).
and , Yield line method by finite elements and linear programming. Struct. Eng. 56 (1978) 37–44.
and , On the convergence of adaptive nonconforming finite element methods for a class of convex variational problems. SIAM J. Numer. Anal. 49 (2011) 346–367. | Zbl | MR | DOI
W. Prager, An Introduction to Plasticity. Addison-Wesley series in the engineering sciences: Mechanics and thermodynamics. Addison-Wesley Pub. Co. (1959). | Zbl | MR
T. Rockafellar, Convex Analysis. Vol. 224 of Grundlehren der Mathematischen Wissenschaften. Princeton University Press, 2nd edition (1983). | MR
M.A. Save, C.E. Massonnet and G. de Saxce, Plastic Limit Analysis of Plates, Shells, and Disks, vol. 43. North Holland, 1997. | Zbl | MR
, Epi-limit on HB and homogenization of heterogeneous plastic plates. Nonlinear Anal. 25 (1995) 499–529. | Zbl | MR | DOI
R. Temam, Mathematical Problems in Plasticity. Gauthier-Villars Paris (1985). | MR
, and , Upper bound limit analysis of plates utilizing the C1 natural element method. Comput. Mech. 50 (2012) 543–561. | Zbl | MR | DOI
Cité par Sources :






