A posteriori error estimation and adaptivity are very useful in the context of the virtual element and mimetic discretization methods due to the flexibility of the meshes to which these numerical schemes can be applied. Nevertheless, developing error estimators for virtual and mimetic methods is not a straightforward task due to the lack of knowledge of the basis functions. In the new virtual element setting, we develop a residual based a posteriori error estimator for the Poisson problem with (piecewise) constant coefficients, that is proven to be reliable and efficient. We moreover show the numerical performance of the proposed estimator when it is combined with an adaptive strategy for the mesh refinement.
DOI : 10.1051/m2an/2014047
Keywords: A posteriori error estimation, virtual element method, polygonal mesh, high-order scheme
Beirão da Veiga, L. 1 ; Manzini, G. 2, 3
@article{M2AN_2015__49_2_577_0,
author = {Beir\~ao da Veiga, L. and Manzini, G.},
title = {Residual a posteriori error estimation for the {Virtual} {Element} {Method} for elliptic problems},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {577--599},
year = {2015},
publisher = {EDP Sciences},
volume = {49},
number = {2},
doi = {10.1051/m2an/2014047},
mrnumber = {3342219},
zbl = {1346.65056},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2014047/}
}
TY - JOUR AU - Beirão da Veiga, L. AU - Manzini, G. TI - Residual a posteriori error estimation for the Virtual Element Method for elliptic problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 577 EP - 599 VL - 49 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2014047/ DO - 10.1051/m2an/2014047 LA - en ID - M2AN_2015__49_2_577_0 ER -
%0 Journal Article %A Beirão da Veiga, L. %A Manzini, G. %T Residual a posteriori error estimation for the Virtual Element Method for elliptic problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 577-599 %V 49 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2014047/ %R 10.1051/m2an/2014047 %G en %F M2AN_2015__49_2_577_0
Beirão da Veiga, L.; Manzini, G. Residual a posteriori error estimation for the Virtual Element Method for elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 577-599. doi: 10.1051/m2an/2014047
, , , and , Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. | MR | Zbl | DOI
and , A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 142 (1997) 1–88. | MR | Zbl | DOI
, , and , Hierarchical a posteriori error estimators for the mimetic discretization of elliptic problems. SIAM J. Numer. Anal. 51 (2013) 654–675. | MR | Zbl | DOI
and , Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. | MR | Zbl | DOI
and , Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44 (1985) 283–301. | MR | Zbl | DOI
, A residual based error estimator for the mimetic finite difference method. Numer. Math. 108 (2008) 387–406. | MR | Zbl | DOI
and , A mimetic discretization of the Stokes problem with selected edge bubbles. SIAM J. Sci. Comput. 32 (2010) 875–893. | MR | Zbl | DOI
and , An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems. Int. J. Numer. Meth. Eng. 76 (2008) 1696–1723. | MR | Zbl | DOI
and , A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34 (2014) 759–781. | MR | Zbl | DOI
, and , Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J. Numer. Anal. 49 (2011) 1737–1760. | MR | Zbl | DOI
, , , , and , Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 119–214. | MR | Zbl | DOI
, and , Virtual Elements for linear elasticity problems. SIAM J. Num. Anal. 51 (2013) 794–812. | MR | Zbl | DOI
L. Beirão da Veiga, K. Lipnikov and G. Manzini, The Mimetic Finite Difference Method. In vol. 11 of Model. Simul. Appl., 1st edition. Springer-Verlag, New York (2013).
, , and , The Hitchhiker’s Guide to the Virtual Element Method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | MR | Zbl | DOI
, A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Int. J. Numer. Methods Eng. 97 (2014) 1–31. | MR | Zbl | DOI
and , Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN 48 (2014) 553–581. | MR | Zbl | Numdam | DOI
D. Braess, Finite elements. Theory, fast solvers, and applications in elasticity theory, 3rd edition. Cambridge University Press (2007). | MR | Zbl
, and , Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2009) 277–295. | MR | Zbl | Numdam | DOI
and , Virtual element method for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | MR | Zbl | DOI
, and , Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. | MR | Zbl | DOI
S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, Berlin/Heidelberg (1994). | MR | Zbl
and , Flux reconstruction and pressure post-processing in mimetic finite difference methods. Comput. Methods Appl. Mech. Eng. 197 (2008) 933–945. | MR | Zbl | DOI
, and , Convergence analysis of the mimetic finite difference method for elliptic problems. SIAM J. Numer. Anal. 47 (2009) 2612–2637. | MR | Zbl | DOI
P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR | Zbl
and , Small data oscillation implies the saturation assumption. Numer. Math. 91 (2002) 1–12. | MR | Zbl | DOI
, , and , A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265–295. | MR | Zbl | DOI
P. Grisvard, Elliptic problems in nonsmooth domains. In vol. 24 of Monogr. Stud. Math. Pitman, Boston (1985). | MR | Zbl
, and , Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems. J. Comput. Phys. 230 (2011) 2620–2642. | MR | Zbl | DOI
and , Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput. Mech. 47 (2011) 535–554. | MR | Zbl | DOI
P. Neittaanmki and S. Repin, Error control and a posteriori estimates. Reliable methods for computer simulation. In vol. 33 of Stud. Math. Appl. Elsevier Science (2004). | MR | Zbl
S. Repin, A posteriori Estimates for Partial Differential Equations. In vol. 4 of Radon Series on Computational and Applied Mathematics. De Gruyter, Berlin (2008). | MR | Zbl
, A technique for analysing finite-element methods for viscous incompressible flow. Int. J. Numer. Meth. Fluids 11 (1990) 935–948. | MR | Zbl | DOI
and , Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Methods Eng. 13 (2006) 129–163. | MR | Zbl | DOI
and , Conforming polygonal finite elements. Int. J. Numer. Meth. Eng. 61 (2004) 2045–2066. | MR | Zbl | DOI
and , Addressing integration error for polygonal finite elements through polynomial projections: A patch test connection. Math. Models Methods Appl. Sci. 24 (2014) 1701–1727. | MR | Zbl | DOI
, , and , Polygonal finite elements for topology optimization: A unifying paradigm. Int. J. Numer. Methods Eng. 82 (2010) 671–698. | Zbl | DOI
, , , and , Polygonal finite elements for incompressible fluid flow. Int. J. Numer. Methods Fluids 74 (2014) 134–151. | MR | Zbl | DOI
R. Verfürth, A review of a posteriori error estimation and adaptive mesh refinement. Wiley and Teubner, Stuttgart (1996). | Zbl
, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients. J. Sci. Comput. 46 (2011) 397–438. | MR | Zbl | DOI
and , Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods. Math. Model. Methods Appl. Sci. 23 (2013) 803–838. | MR | Zbl | DOI
E. Wachspress, A rational Finite Element Basis. Academic Press (1975). | MR | Zbl
Cité par Sources :






