A constraint preserving numerical method for the approximation of wave maps into spheres is presented. The scheme has a second order consistency property and is energy preserving and reversible. Its unconditional convergence to an exact solution is proved. A fixed point iteration allows for a solution of the nonlinear system of equations in each time step under a moderate step size restriction.
DOI : 10.1051/m2an/2014044
Keywords: Geometric evolution problem, wave maps, nonlinear partial differential equation, discretization
Bartels, Sören 1
@article{M2AN_2015__49_2_551_0,
author = {Bartels, S\"oren},
title = {Fast and accurate finite element approximation of wave maps into spheres},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {551--558},
year = {2015},
publisher = {EDP Sciences},
volume = {49},
number = {2},
doi = {10.1051/m2an/2014044},
mrnumber = {3342217},
zbl = {1316.65085},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2014044/}
}
TY - JOUR AU - Bartels, Sören TI - Fast and accurate finite element approximation of wave maps into spheres JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 551 EP - 558 VL - 49 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2014044/ DO - 10.1051/m2an/2014044 LA - en ID - M2AN_2015__49_2_551_0 ER -
%0 Journal Article %A Bartels, Sören %T Fast and accurate finite element approximation of wave maps into spheres %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 551-558 %V 49 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2014044/ %R 10.1051/m2an/2014044 %G en %F M2AN_2015__49_2_551_0
Bartels, Sören. Fast and accurate finite element approximation of wave maps into spheres. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 551-558. doi: 10.1051/m2an/2014044
, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34 (1997) 1708–1726. | MR | Zbl | DOI
, and , Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii. Numer. Math. 115 (2010) 395–432. | MR | Zbl | DOI
, , and , A convergent and constraint-preserving finite element method for the -harmonic flow into spheres. SIAM J. Numer. Anal. 45 (2007) 905–927. | MR | Zbl | DOI
, Semi-implicit approximation of wave maps into smooth or convex surfaces. SIAM J. Numer. Anal. 47 (2009) 3486–3506. | MR | Zbl | DOI
, Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces. Math. Comput. 79 (2010) 1263–1301. | MR | Zbl | DOI
S. Bartels, Projection-free approximation of geometrically constrained partial differential equations. Preprint (2013). | MR
, and , Finite element approximations of wave maps into spheres. SIAM J. Numer. Anal. 46 (2008) 61–87. | MR | Zbl | DOI
, and , Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers. Math. Comput. 78 (2009) 1269–1292. | MR | Zbl | DOI
, and , Weak compactness of wave maps and harmonic maps. Ann. Inst. Henri Poincaré Anal. Non Linéaire 15 (1998) 725–754. | MR | Zbl | Numdam | DOI
T. Karper and F. Weber, A new angular momentum method for computing wave maps into spheres. Technical Report. Preprint ArXiv:1312.3257 (2013). | MR | Zbl
, and , Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171 (2008) 543–615. | MR | Zbl | DOI
and , Spatially discrete wave maps on -dimensional space-time. Topol. Methods Nonlinear Anal. 11 (1998) 295–320. | MR | Zbl | DOI
J. Shatah and M. Struwe, Geometric wave equations. In vol. 2 Courant Lect. Notes Math. New York University Courant Institute of Mathematical Sciences, New York (1998). | MR | Zbl
, The wave maps equation. Bull. Amer. Math. Soc. 41 (2004) 185–204 (electronic). | MR | Zbl | DOI
Cité par Sources :





