We consider optimal control problems for the bidomain equations of cardiac electrophysiology together with two-variable ionic models, e.g. the Rogers-McCulloch model. After ensuring the existence of global minimizers, we provide a rigorous proof for the system of first-order necessary optimality conditions. The proof is based on a stability estimate for the primal equations and an existence theorem for weak solutions of the adjoint system.
Keywords: PDE constrained optimization, bidomain equations, two-variable ionic models, weak local minimizer, existence theorem, necessary optimality conditions, pointwise minimum condition
@article{M2AN_2013__47_4_1077_0,
author = {Kunisch, Karl and Wagner, Marcus},
title = {Optimal control of the bidomain system {(III):} {Existence} of minimizers and first-order optimality conditions},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1077--1106},
year = {2013},
publisher = {EDP Sciences},
volume = {47},
number = {4},
doi = {10.1051/m2an/2012058},
mrnumber = {3082290},
zbl = {1275.49005},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2012058/}
}
TY - JOUR AU - Kunisch, Karl AU - Wagner, Marcus TI - Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 1077 EP - 1106 VL - 47 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2012058/ DO - 10.1051/m2an/2012058 LA - en ID - M2AN_2013__47_4_1077_0 ER -
%0 Journal Article %A Kunisch, Karl %A Wagner, Marcus %T Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 1077-1106 %V 47 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2012058/ %R 10.1051/m2an/2012058 %G en %F M2AN_2013__47_4_1077_0
Kunisch, Karl; Wagner, Marcus. Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions. ESAIM: Mathematical Modelling and Numerical Analysis , Direct and inverse modeling of the cardiovascular and respiratory systems. Numéro spécial, Tome 47 (2013) no. 4, pp. 1077-1106. doi: 10.1051/m2an/2012058
[1] , and , Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology. J. Math. Anal. Appl. 388 (2012) 231-247. | Zbl | MR
[2] and , A simple two-variable model of cardiac excitation. Chaos, Solitons and Fractals 7 (1996) 293-301.
[3] , Nonlinearity and Functional Analysis. Academic Press, New York, San Francisco, London (1977). | Zbl | MR
[4] , and , Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Analysis: Real World Appl. 10 (2009) 458-482. | Zbl | MR
[5] , , and , Theoretical analysis and control results for the FitzHugh-Nagumo equation. Electron. J. Differ. Eq. (2008) 1-20. | Zbl
[6] , Direct Methods in the Calculus of Variations. Springer, New York (2008). | Zbl | MR
[7] , Partial Differential Equations. Amer. Math. Soc. Providence (1998). | MR
[8] , Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1 (1961) 445-466.
[9] and , Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008). | Zbl | MR
[10] , and , A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology. Comput. Visualiz. Sci. 14 (2011) [2012], 257-269. | MR
[11] and , Optimal control of the bidomain system (I): The monodomain approximation with the Rogers-McCulloch model. Nonlinear Anal.: Real World Appl. 13 (2012) 1525-1550. | Zbl | MR
[12] and , Optimal control of the bidomain system (II): Uniqueness and regularity theorems. University of Graz, Institute for Mathematics and Scientific Computing, SFB-Report No. 2011-008 (to appear: Ann. Mat. Pura Appl.) | Zbl
[13] and , Control theory inspired considerations for the mathematical model defibrillation, in Proc. of the 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference 7416-7421.
[14] and , Higher order optimization and adaptive numerical solution for optimal control of monodomain equations in cardiac electrophysiology. Appl. Num. Math. 61 (2011) 53-65. | Zbl | MR
[15] , and , Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology. Comput. Optim. Appl. 49 (2011) 149-178. | Zbl | MR
[16] , and , Optimal control approach to termination of re-entry waves in cardiac electrophysiology. University of Graz, Institute for Mathematics and Scientific Computing, SFB-Report No. 2011-020 (to appear: J. Math. Biol., doi: 10.1007/s00285-012-0557-2) | MR
[17] , and , An active pulse transmission line simulating nerve axon. Proc. Institute of Radio Engineers 50 (1962) 2061-2070.
[18] and , A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Engrg. 41 (1994) 743-757.
[19] , Funktionalanalysis und Steuerungstheorie. Springer, Berlin, Heidelberg, New York (1976). | Zbl | MR
[20] , , , , and , Computing the Electrical Activity in the Heart. Springer, Berlin (2006). | Zbl | MR
[21] , A Bi-Domain Model for Describing Ischemic Myocardial D-C Potentials. Ph.D. thesis. Massachusetts Institute of Technology (1978).
[22] , Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Analysis: Real World Appl. 10 (2009) 849-868. | Zbl | MR
[23] , Optimal Control of Differential and Functional Equations. Academic Press, New York, London (1972). | Zbl | MR
[24] , Functional Analysis. Springer, Berlin (1995) (reprint of the 6th edn. from 1980). | MR
Cité par Sources :






